
不知该看哪些数据?卖家每日必看的6个数据
数据分析的重要性不用赘述,想必卖家们也心知肚明,但是在每日的店铺运营中该看哪些数据,如何分析哪些数据,确是卖家们每日最头疼的问题,学不会数据分析?卖家每日必看的6大数据。
2016年,阿里在众多大会中,多次提及数据运营,并把其列入三项未来核心趋势的之一,数据化运营也被越来越多的商家所接受,如果你是淘宝从业者,学会分析数据能够大幅度提升你的创业成功机率。但是有哪些电商数据是必要分析掌握的呢?
不是每一款都可以成为爆款的,每一爆款的形成都离不开数据分析。做淘宝最开始的工作肯定是选款,选款当然不能靠感觉,看感觉去选款基本都是耍流氓。关于选款网上有很多的比较系统的文章,这里我就不复述了。做简单的方法就是,可以去看TOP卖家的次推款,这些都是比较不错的。
PS:这里会有人问,为什么不是去做Top商家的主推款呢?因为必然有很多人去复制主推款,价格竞争会很大,一般的卖家没有竞争力,所以建议去做次推款。
测款的目的主要是测试点击率、收藏率、加购率。测款之前标题优化的工作必须做好。
测款可以用自然流量测,也可以用直通车测。自然流量时间会花费的长一些,直通车花费的钱会多一些。今天我们主要说下直通车测款。
2.1直通车的步骤如下:
A、准备好测试图片;
B、全部设置相同的创意标题(这样就能看出是哪里的问题);
C、数据分析,选出点击大于100以上的创意进行对比,如果数据能够更大更好,因为只有数据大,才更有参考性;
D、然后和其他的图片进行对比,重复,直到点击率达到点击率均值及以上。
2.2有了以上的数据之后,我们需要的就是数据分析,具体要看的数据如下:
以上三个数据要综合考虑,综合考虑后的数据才是最准确的。
推广阶段对于宝贝流量的爆发有至关重要的作用。在这里我们需要关注的数据如下:
新品期的点击率对于流量的提升比转化率都要高,那么点击率从哪里去看呢?大家看下图:
具体的路径是:生意参谋-经营分析-商品效果。
PS:
1、点击率不能低于2%,如果能够保证10%以上的点击率,你的手淘流量会很容易的爆发起来。
2、点击率低于2%的话,一定要去分析原因,尽快解决。影响点击率的主要因素有:主图、价格、基础销量。
3、以上数据的选择需要注意如下几点:
A、端口选择PC端,因为只有PC才有点击率的数据,但是在大数据下,这个指标也是准确的。
B、如果数据不够大的话,时间选择7天,只有大数据才会准确。
同样,新品期的收藏率、加购率的权重也是非常的大,大家看下图:
具体的路径是:生意参谋-经营分析-商品效果。
PS:
1、如果你能够保证10%以上的数据,你的手淘流量会很容易的爆发起来。当然,你可以用一些非常规手段,这些你懂得。
2、影响收藏率、加购率的主要因素有:详情页、活动、客服技巧、评论、问大家。
3、以上数据的选择需要注意如下几点:
A、数据选择全部。
B、如果数据不够大的话,时间选择7天,只有大数据才会准确。
C、上面是收藏加购的人数,收藏率、加购率的算法是除以商品访客数就可以了。
随着时间的推移,基础销量的积累及客户评论的出现,转化率的权重越来越高。
查看转化率的路径是:生意参谋-首页-核心指标。如下图:
在一段时间之后,转化率的权重逐步增加。随之时间的推移,转化率稳步提高(如果用的是非常规手段,建议别超优秀均值),这样权重会提高更快的。
三、流量爆发之后需要关注的数据1、跳失率
查看跳失率的路径是:生意参谋-首页-流量分析
影响跳失率的主要原因是详情页、评论、问大家。在流量起来之后我们首要的任务是做好关联销售,好处如下:
1、 降低跳失率,提高停留时间。
2、 提高转化率,提高每一个流量的价值。
2、评论维护
客户的评论是检测我们产品和服务最直接的因素。所以客户的评论我们一定要去认真分析,防微杜渐,别有了不能解决的问题再去重视。
3、DSR
DSR就是常说的动态评分,查看路径是:卖家中心首页右侧,如下图:
店铺动态评分是指在淘宝网交易成功后,买家可以对本次交易的卖家进行如下三项评分:
A、 宝贝与描述相符
B、 卖家的服务态度
C、 物流服务的质量。
每项店铺评分取连续六个月内所有买家给予评分的算术平均值。(每天计算近6个月之内数据)。只有使用支付宝并且交易成功的交易才能进行店铺评分,非支付宝的交易不能评分。
这个指标我们一定要去每天统计,连续五天下滑,一定要去引起重视。如果下滑,去分析原因。最简单的方式去发一批顺丰快递,以为大部分的评分都是因为快递引起的。
以上的数据做好,有个爆款不难的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30