
打通产业线数据,“大数点”为制造业做数据分析来预测问题
中国的制造业离工业4.0还有很长一段路要走, 目前普遍的观点是大部分中国制造企业仍然徘徊在工业2.0-3.0之间 。工业2.0 指企业拥有自动化生产线,据德意志银行报告显示,截止至2012 年,中国自动化市场已达到千亿美元。而 工业3.0 是把自动化生产过程信息化,比如企业部署了ERP、MES(制造执行系统)等软件系统,来实时掌握生产信息。但这些产业线间的 信息是孤立的,数据没有联通,一旦某环节出现问题,也不知道影响因素是什么,生产效率仍然上不去。
基于此, “大数点” 做了工业大数据引擎与物联网解决方案, 其核心技术产品包括工业物联网总线 IoT Datahub 和基于Erlang构建的实时数据仓库。虽然该技术系统具备通用性 ,但要对接到具体的行业需要定制性开发,存在规模化的问题;加之,传统制造业难以赶超美国、德国,因此 “大数点” 选择 先做锂电池、新能源等更具前景的制造行业 ,其它行业如机械制造、石油天然气等,交由经其培训的代理商去做。
通俗的来说, “大数点” 是把所有产业线连接到云端,在云端集成相应应用,如ERP、MES、供应链和CRM等,以实现一个云端管理多条产线,而整个云平台由 “大数点” 来维护。这样的 好处在于企业灵活性提升,并且降低了企业IT运维成本。 更重要的是, 把 以往产业链中孤立的数据汇集到一起,能进行大数据分析。
数据串联的效果是,企业对整个工业流程有明晰的认识:在哪些环节上有问题、哪些环节比较关键等。此外还能基于机器的数据、生产的质量及速度等,预测是哪些影响了生产质量,哪些设备可能会出现状况,“比如说能够提前5小时或1天告知,有机器可能会宕机,企业能提前防范非计划性停产,避免更大的损失。” 大数点 CEO犹杰说。
那么我们自然会想到, 传统制造业的生产设备宕机的可能性大吗? 或者说这种预测是否真的有帮助?犹杰告诉36氪,国内大部分的做生产制造业的是中小型企业,由于资金没那么充裕,采购的设备相对来说故障率很高。
商业模式上, 大数点 会按照连接设备数目的多少、以及产生的数据量的大小收费。另外,若通过大数点的数据分析,帮助企业预防了事故,会按照事故转化的效益抽成。目前客单价在100-300万。
与 大数点 做类似事情的公司还有 Thingworks , Predix of GE, ProfiNet of Phönix, Sinalytics of Siemens等,与其它竞品相比,犹杰表示,“ 大数点 首创了在数据采集(流动中)时实现对数据实时过滤/处理的插件框架,支持过滤插件的可视化组合和动态载入,和R统计语言的数据建模映射到Erlang的数据处理函数,能实时处理海量数据。”
可以看出, 大数点实际做的主要是数据分析这块, 但传统有采集能力的企业已有相应的分析方案, 为什么需要大数点单独提供数据分析呢? 犹杰告诉36氪,传统的采集做分析往往效率较低或者效果不好,而且他们并不理解各种工业企业的业务逻辑,难以实现深层次的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30