
大数据之伤—小数据思维
1980年之前,临床医师们主要依赖“经验”、“直觉”以及“触摸不到的线索”来判断一个发烧了的小孩子到底是由较轻的疾病(如感冒)还是由比较严重的疾病(如急性肺炎或脑膜炎)引起的。换句话说,他们靠直觉来看病。在1980年,一个由研究者组成的小组研究了那些有经验的儿科医生是如何为他们的病人诊断的。他们发现了那些杰出的医师在直觉中参考了“输入信息”,而那些缺乏经验的医师在试图可靠地试用这些“输入信息”时就显得过于主观了。
在随后的研究中,研究人员从精确度和客观性两个方面上加强了他们的系统。在这个系统中,那些正在接受培训的儿科医师能够像有经验的医师那样接触到很多因严重疾病而导致发烧的儿童。事情发生了根本上的变化:直觉的建立被质化和量化地形成了一种形式,并且这种形式可以被那些经验并不丰富的医生所利用。如今,几乎所有正在为发烧儿童看病的医生都在证实这精妙的发现。
如果我们把目标确定为为每位儿童的每次就诊都提供最好的治疗,那么我们需要的就不仅仅是直觉和专业的技能了,因为人无完人。基于证据的医疗方法(EBM)通过把临床研究整合进治疗准则来帮助医师提高治疗水平。然而就普遍意义来说,EBM一般是基于“小数据”的研究——与动辄数十万或数百万的大数据不同,一个大型的EBM则是包含了数千例病例的系统。在这样的小样本规模系统中输入信息必须被良好地定义和形式化,随之而来的结果便是包含了所有这些信息的治疗准则在解释病人与病人之间的差异时就显得力不从心。因而EBM有时被人们嘲笑为“菜谱式治疗”,医生们只是机械地遵循着这些治疗的“配方”来治病。鸡肉与菠菜对于一些人来说也许是顿美味,但是当我们要为一位素食主义者上菜时又该怎么办呢?
大数据的容量足够用来创造更加个性化的“治疗菜谱”。利用一个容量为5亿人的数据集,你可以为一个体重超重且高胆固醇每天必须服用阿司匹林和立普妥的35岁男人,或者为一个与上述情况完全相同但是体重偏轻的人定制治疗方案。
大数据也可以允许我们通过在粗略的未经处理的数据集中逐条比对来发现微小但是强有力的线索,从而进行分析研究。小数据集中通常不能处理粗糙的原始数据,因为它不能分辨“心梗”与“心肌梗死”的区别,即便他们指的是同样的事情。并且由于在小数据集中只能使用单一的术语,使得我们无法做出确凿的归纳。同时小数据集也无法支持需要识别“心梗”与“心肌梗死”是同一种术语的研究。小数据集同样无法支持我们使用很细节的线索作为输入,因为它们在数据集的发生具有太大的随机性--确凿的归纳是无法从这样的小样本数据集中得到的。
目前有越来越多的争议在讨论大数据是否正在取代直觉在医疗中的地位。无论怎样,大数据仍是我们最大的希望--计算机可以在模仿人类专家直觉方面跟进一步,那时我们就再也不用依赖EBM这样的小数据集了。真正的问题并不是大数据正在威胁医疗中的直觉,而恰恰相反,是在于我能未能做到这一点。我们如今在医疗领域并未过于依赖大数据,因为这的确需要大数据量,而医学研究者们手中并没有真正的大型临床数据集。
建立,维护,标识以及保密临床临床数据集的代价太高昂了。泄露数据集信息的惩罚很重,而建立这样数据集的利益却几乎不存在。即便是政府支持的健康信息流通项目通常也不进行数据统计。取而代之的是,这些系统被用作让登陆者进入一个外部系统,一次只能取回一位患者的数据,并且得到的数据通常是摘要形式的。大数据分析是无法在这样的体系中实现的。
然而,大数据量医疗数据集受到的最大壁垒是医疗信息中盛行的所谓“最佳实践准则”,这一准则已经落后于其他行业一二十年了。医疗信息体系仍在持续强化使用陈旧的数据屏障,而这屏障正是维持“小数据集”研究的基础。在这个体系中,只有通过审核的,标准的,被编辑过的数据才能被接收——这里没有任何粗糙的原始数据!随之产生的数据集便是小数据集,因为屏障式的处理过程是强化数据源的瓶颈,由于缺乏一致性,许多可用的数据被拒之门外。这个屏障创造了同质化的数据,而排除了能使系统真正有用的多样性,这就如同白面包一样——一个被滤去了谷物最好营养物质的空空的净化盒。如果在大数据中使用了这样的屏障,谷歌和亚马逊就不可能成功,原始的大数据正是他们成功的原因。
除非每个医生都同时拥有无与伦比的直觉,否则计算机就应该用来提供更好的医疗。如果我们在处理过程中摒弃小数据思维,并开始建立真正的大数据,那么大数据在医疗支持中将会发挥更加巨大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14