京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析:客户细分的五个过程
第一步,客户特征细分。一般客户的需求主要是由其社会和经济背景决定的,因此对客户的特征细分,也即是对其社会和经济背景所关联的要素进行细分。这些要素包括地理(如居住地、行政区、区域规模等)、社会(如年龄范围、性别、经济收入、工作行业、职位、受教育程度、宗教信仰、家庭成员数量等)、心理(如个性、生活型态等)和消费行为(如置业情况、购买动机类型、品牌忠诚度、对产品的态度等)等要素。
第二步,客户价值区间细分。不同客户给企业带来的价值并不相同,有的客户可以连续不断地为企业创造价值和利益,因此企业需要为不同客户规定不同的价值。在经过基本特征的细分之后,需要对客户进行高价值到低价值的区间分隔(例如大客户、重要客户、普通客户、小客户等),以便根据20%的客户为项目带来80%的利润的原理重点锁定高价值客户。客户价值区间的变量包括:客户响应力、客户销售收入、客户利润贡献、忠诚度、推荐成交量等等。
第三步,客户共同需求细分。围绕客户细分和客户价值区隔,选定最有价值的客户细分作为目标客户细分,提炼它们的共同需求,以客户需求为导向精确定义企业的业务流程,为每个细分的客户市场提供差异化的营销组合。
第四步,选择细分的聚类技术。目前多采用聚类技术来进行客户细分。常用的聚类方法有K-means、神经网络等,企业可以根据不同的数据情况和需要,选择不同聚类算法来进行客户细分。同时将收集到的原始数据,转换成相应的数据模型所支持的格式,这个过程称为数据初始化和预处理。
第五步,评估细分结果。在对客户群进行细分之后,会得到多个细分的客户群体,但是,并不是得到的每个细分都是有效的。细分的结果应该通过下面几条规则来测试:与业务目标相关的程度;可理解性和是否容易特征化;基数是否足够大,以便保证一个特别的宣传活动;是否容易开发独特的宣传活动等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06