
常用的产品数据分析方法之漏斗模型与归因模型
刚刚接触数据运营的同学可能都会产生这样的困惑:数据运营难不难?我数学不好该怎么做?是不是还需要学习数学建模?我该看点什么书学习?包括喵君刚开始工作的时候也在困惑,面对一条条业务数据不知道从何下手。今天我们就来一起捋一捋一些工作中常见的产品数据分析方法,回答一下“怎么做”的问题。
我曾经对新人说过,数据可以绘制用户肖像及行为轨迹,可以监控产品转化及发展情况,可以横向评估渠道效果,这一切都涉及到与产品、市场、技术等多个部门的协同工作。数据运营是很伟大也很多面手的职业。
今天首先要介绍的是漏斗模型:它可以广泛应用于流量监控、产品目标转化等日常数据运营工作中。之所以称为漏斗,就是因为用户(或者流量)集中从某个功能点进入(这是可以根据业务需求来自行设定的),可能会通过产品本身设定的流程完成操作。
对于我们要做的就是对按照流程操作的用户进行各个转化层级上的监控,寻找每个层级的可优化点;对没有按照流程操作的用户绘制他们的转化路径,找到可提升用户体验,缩短路径的空间。运用漏斗模型比较典型的案例就是电商网站的转化,用户在选购商品的时候必然会按照预先设计好的购买流程进行下单,最终完成支付。这些数据虽然是我瞎编的(你来打我呀)但是如果没有整个业务流程的梳理,就不会有这种漏斗模型的产出,更别说去查找每个步骤出现用户流失的问题了。
当然有些时候也要做一些竞品分析,对于同行业同类数据的转化情况做到心中有数。尽可能降低用户流失是我们的目标,但是如果可以做到不低于行业平均水准同时资源有限的话,降低这个转化漏斗的用户流失就需要被放置较低的优先级里。
还有一些比较经典的漏斗转化模型就是用于用户注册流程上:我们需要知道多少用户点击了注册按钮(漏斗的开端),多少用户完成了信息填写(多少用户放弃填写),多少用户点击发送验证码按钮(验证码到达率),成功完成注册的人数。如果一旦在运营过程中发现某一天的注册用户数出现波动,那么除了去查一下市场渠道及广告投放,产品本身的注册功能也是可能出现这个问题的重要因素。
对于产品的非功能页面,比如某个活动页,公司简介页等等,用户可能不会按照我们既定的流程到达,那么就要根据实际的目标来确认是否有讲这类非功能页面的转化流程做优化的必要性。
归因模型
归因模型,更准确的描述其实是一种既定的规则,我们需要根据产品的实际需求,将达成目标(形成转化)之前的功劳根据设定的权重分配给每一个转化节点。产品形成一次转化,用户可能要经历很多个转化节点(转化并不一定只完成销售。一次注册也可以看作一次转化,一次访问也可以看作一次转化,要根据业务实际需求制定)。
归因模型在使用过程中通常分为几类:最终互动模型、首次互动模型、线性归因模型、时间衰减归因模型、自定义等,这里逐一进行描述:
产品情景描述:用户在Baidu上搜索一个关键词,点进了一个叫a.com的网站之后放弃继续搜索。过了几天他又在自己的Facebook上看到了这个关键词的广告,随后他点击了广告最终完成购买。
最终互动模型:最后一个节点将被分配100%的功劳,那么Facebook(社交媒体)上的广告获得100%的功劳;
首次互动模型:用户首先是在Baidu进行关键词搜索的,那么Baidu(搜索引擎)将被分配100%的功劳;
线性归因模型:用户从开始搜索到转化,共经历了三个渠道(节点),那么每个节点将被平均授予33.3%的功劳;
时间衰退归因模型:用户在Baidu搜索和访问了a.com是几天之前的事情,那么这两个渠道因为时间经历比较长的原因将被分配较低的功劳(如各20%),Facebook将被分配相对较高的功劳(60%);
当然,实际的业务流程和渠道转化流程不会像描述的这样简单,我们也可以根据需求自行定义。归因模型的意义在于寻找到真正对于现阶段产品发展有利的渠道,并将优势扩大化。当然,它是具有时效性的,也就是说产品的不同阶段归因模型所得到的结果很可能是不一样的。
之后还会针对产品数据分析方法中的“Cohort分析(同期群分析)“、”数据细分“、数据整理做一些描述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30