
关于数据变现的思考
最近数据挖掘与分析讨论比较热的话题是“数据变现”,也就是所谓的数据挖掘在业务中进行了应用,并确实给业务带来更大的业务绩效收益。很多朋友都知道,有技术、熟悉业务是前提,但有了前提,也常常困惑于各种迷惑,数据到底被业务用了么,业务用了效果不好的话,问题出在哪里?
本文打算通过一些经验之谈,阐述“数据变现”基本准则(个人推荐),希望抛砖引玉,能引起更多人思考、讨论。
数据变现前提准备
数据变现首先得有清洗、整理、及时、准确的数据,以及科学的数据分析方法和手段;然后得有业务的熟悉程度,包括业务流程、业务运作方法和运营难点、业务解决方案等等。有了前提,再说如何把数据变现为价值。
数据的准备、分析方法自不用多说,大家已经讨论N多遍了。这里主要讨论对业务的熟悉程度,我们常常提到的业务熟悉,往往只是停留在业务流程、业务数据流的熟悉。例如订单流程,数据流到某个状态才转ERP让物流拣货。直到现在,很多数据分析人还是认为这样的就叫熟悉业务了。
我曾经做过的大促分析,经过当天每小时流量、订单、库存,结合商品分布、用户分布,准确诊断大促不足的地方、大促高价值的地方,然后再一次促销中,将数据洞察转换为行动方案。这是因为我熟知业务部门要行动,他们需要了解到底哪些地方要如何改进,改进多少?例如商品部门,你说准备库存结构不合理,那你告诉我到底各SKU准备多少,为什么这样准备?客户部门,你说老客户活跃度激活不够,你告诉我如何做的更好,凭什么说这样才能更好?这些大家觉得仅仅熟悉流程,能给答案推动数据变现么?
充分地洞察和分析
数据要能说话,前提它要能成为说话的“证据”,例如销售增速同比下滑50%,你凭什么说是老客户维护是主要问题,而不是网站产品或者价格问题?
我个人以为这是一个数据分析、洞察融入业务逻辑的推理过程,写出来的分析报告逻辑严密,才能让业务部门信服、使用数据结论和建议。
上一个博文提到的:假设订单转换率由3%下降到1.5%,那么从业务角度,会有哪些可能性?
1、导流出了问题,新的流量来源僵尸用户多?(用户访问习惯性行为判断)
2、推广出了问题,很多用户误点广告(由退出率判断)?
3、网站是否改版,降低了客户体验?(用户行为路径判断)?
4、网站其他问题,例如某些功能比较难用,网站变慢等(用户行为访问节点分析判断)?
5、是否商品突然没有了吸引力,例如商品之前还是大量5-6折的商品引流,现在变成8折为引流了?(通过商品访问深度、商品访问比较分析)
我们每一种可能,都要有“对应”的数据来说明,让业务部门关注或者不关注这个因素,而不是看来数据就算了。你说通过某广告来源来的流量,马上就退出的情况,这不是点错广告,是什么呢?这就是逻辑推理!
和业务充分沟通
这点很重要,也有挑战性,不同公司的企业文化,决定了你沟通的技巧需要有对应,所以你在某企业有沉淀,有人脉了,才更容易沟通,更容易交心。
根据原则,就是首先你的数据分析是来帮助他们的,而不是让他们帮你做数据试验;其次你的业务逻辑非常清晰,让业务觉得和你交流有共同语言,值得交流;最后你确实有成功案例,让业务有动力与你倾力合作。
推动数据驱动执行
交心的沟通后,业务部门甚至可能让你参与业务会议、请你帮忙提业务运作建议。但如果你还没与业务部门达成如此默契,就需要主动看执行结果,如果不够理想,请主动思考什么原因,与业务部门咨询是否有什么困难,缺乏什么条件。
总结
数据驱动失败,可能业务用户执行不到位,但也可能是数据分析漏了什么业务因素,或者数据挖掘算法不够合理,所以BI部门需要多审视自己,而且即便是业务执行不到位所致,请多关注对方是否有不得已的原因,而不是埋怨业务部门不给力,在未来合作中,数据才能更主动发挥价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14