京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何做好数据分析
在这里,我将题主的“快速”理解为如何在最短的时间内高效率的成为数据分析师。我想这才是题主的初衷吧!
首先,成为任何一个技术型工作的从业者最需要的就是掌握相关的专业技能,因此也可以这么理解题主的话:如何在最短的时间内高效率的掌握数据分析知识从而达到找一份相关工作的资格!
在长篇大论之前,我先给题主来一粒定心丸:3个月零基础入门数据分析师是一件完全可能的事!
看清楚哦,我说的是入门。入门基本上就是懂得了常规的数据分析知识并且据此找到一份简单的工作!
知乎里面有很多关于学习数据分析的帖子,写的都很好。但是它们和快速没有任何关系,你要完成那些大神们的书单贴,至少需要3、5年才行。因为那是一个perfect 的数据分析师,而不是入门级别的!
我简单的将学习数据分析的同学分为三种:
1.学过计算机但不会统计学(新手)
2.学过统计学但不会计算机(小白)
3.统计学和计算机都不会(菜鸟)
他们的排名是: 菜鸟 < 小白 <= 新手。 无需置疑,菜鸟是最弱的级别,学习起来也是困难重重。小白和新手算是有一定的基础,学习起来会比较轻松一点。 从我个人角度来看,我觉得计算机技术要重于统计学知识,因此我认为学计算机的同学更容易入门。
当然,无论处于哪一个级别你都需要做两件事:
一份正确的学习计划
一套正确的书籍
废话不多说,先上书单:
上面这十本书,每一本都是经典。
它完美的解决了一个初级数据分析师应该掌握的技能:
统计学基础
常用模型理论
R和PYTHON
网页分析
数据库技术
实战应用
简单的描述下:
统计学无需置疑是一个数据分析师的核心功底,你只有学好了统计学才能谈得上数据分析。
但是统计学又常常是不够用的,我们还需要一些高级的模型来解决我们实际业务中的问题,比如:银行需要判断是否给某个客户发放信用卡 这就需要一个高级的二分类模型。这里我们的数据挖掘理论就派上用场了。
有了理论知识,我们需要用工具去实现我们的理论并加以应用。这个年代,已经没有人会去手工计算某个问题了,R和PYTHON就是最负盛名的数据分析工具。 关于R和PYTHON的地位,题主可以百度,谷歌,知乎等搜索一遍。 至于如何学习,请看上面的书单!
如果致力于在互联网领域发展,那么网页分析是你必看的一本书籍。这本是是大名鼎鼎的GA创始人著作,看一遍,做一遍会有一个不错的收获。
数据分析师是跟数据打交道的,我们的数据都是存储在数据库里面的,因此掌握必备的数据库技术是肯定要的!
以上就是对入门级别的数据分析师做的一个简单的描述!
那么,在对书籍有了一定的了解之后,具体的该怎么学习呢?
我们将三个月分为三个学习阶段,每个阶段请务必保持每天3个小时以上的学习时间。这个时间要求不过分,不管是对学生党还是上班族,三个小时总是抽的出来的。
第一阶段:初识数据分析
这个阶段是你学习数据分析的第一个月。核心的三本书就是:统计学、R IN ACTION、深入浅出数据分析。
第一星期:好好的阅读一下统计学这本教材。按照每天3个小时的时间,一个星期你至少能看完8章。踏踏实实的看完,课后习题不需要做,重点放在理解公式推导以及专业名字定义的理解上。
第二星期:有了统计学基础,R语言学习起来就不会太费劲。《R in action》 是公认的R语言经典教材。跟着书上的代码仔细的敲一笔遍,你不需要全部看完这本书,只需要学会前8章左右就差不多了。 学完后你会对统计学有一个更深的认识~
第三个星期:《深入浅出数据分析》这本书很大头,不是因为它内容多,而是因为它废话和插图多。很有意思的一本入门级别的教材,花一个星期好好的读一下,能学多少是多少。
第四个星期:查漏补缺。经过前三个星期的学习,你一定有不少的疑惑或者遗忘了某些知识。不要着急,这个星期就是用来好好回顾一
下你本月所学的东西,不懂的定义再看看,不会的代码再敲敲,不懂的知识再google一下~
第二阶段:升级你的技能
第一个月只是让你对数据分析有一个初步的认识,你已经可以秒杀20%左右的人了(我瞎猜的)
这个月就是要升级你的技能,在对已有的知识基础上做一个升华。本月任务较重,小伙伴需要动脑和动手的地方比较多。
第一个星期:《数据挖掘导论》这本书绝对是一本良心教材。拿到手从第一章开始阅读,在一个星期之内能看多少就看多少。但是要尽量多看点,因为此书你可能要看一辈子的~~不要做笔记,因为你做的笔记大部分时间都是在抄书,没啥意思的。数据挖掘可不是记忆的东西,是要靠理解的!
第二个星期:来来来,python大法学起来。正所谓 life is short, I use python. 不要问那种烂大街的问题:R和PYTHON哪个好。 等你都学了,你就再也不会问这个问题了。 《利用PYTHON进行数据分析》是你学习PYTHON的不二之选,对着书,着重学习numpy,pandas两个包! 对了,也要学会怎么安装PYTHON这也是技术活!
第三个星期:为毛感觉前两个星期啥也没学到?乱七八糟的! 没事,这是正常的,难道你指望两个星期就能学完数据挖掘吗? 在此,你已经有了一定的Python,统计学,数据挖掘基础知识,那么是不是能够讲它们组合起来用一用呢? scikit-learn,你值得拥有。 看不懂没关系,先去看看它们的文档以及那些莫名的专业词语。 然后接着学你的数据挖掘和PYTHON。
第四个星期:重复第三个星期的内容。对了,你是不是应该对R再做点事情呢?
第三阶段:准备一个小小的毕业吧
前两个月会过的很痛苦,很累,很烦躁!不用担心,你终于来到了第三个月,这个月与前两个月完全不一样,因为这个月会更加更加的痛苦!!
在这个月,我们需要开始学习sql的相关知识。SQL绝对是数据分析师的必备技能,没有之一。作为这个星球上一个通用的语言,它的存在使得我们进行数据处理时大大的提高了效率。既然SQL学了,那也就学学mysql吧,这是一个存储数据的东西,你说它重不重要呢? 这两个并不难学,稍微花点功夫就能入门了。
本月重点是重复第二个月的工作啊,继续研究统计学、数据挖掘、PYTHON还有那可爱的R语言。怎么研究? 这个还要来问我吗? 书单都在上面了~ 看着书复习就行。
对了,如果你想去互联网公司投份简历,记得要把《网页分析》这本书好好的过一遍,相信我,你只要看一遍,就能打败百分之80 的面试官。因为他们压根看不起GA。
你看,三个月入门数据分析师,并不是不可能嘛~~ 我敢说,你这三个月学到的知识已经可以击败一大半的所谓的数据分析师们了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12