京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从大数据养牛看物联网创业思维
“目前,人们对于大部分牲畜的健康、营养管理都是通过每天肉眼观察和经验来判断的。这是一种十分低效率的方法,因为当发现问题的时候纠正难度很大,并且代价高昂。”沃西说。
生死畜牧公司的做法是让牛吞下一个集成了各种传感器、芯片、通讯系统的长约4.5英寸的“电子药片”(ePill),“电子药片”进入牛的“瘤胃”(反刍动物4个胃中的第一个,也是最大的一个,主要作用是暂存饲料和微生物发酵)后停留下来,并由此开始不间断追踪牛的各种生命信息,包括心跳频率、体温、反刍时间、胃酸浓度、激素分泌等。
这些生命信息通过微波传送到附近的信息接收器,并发送到云端平台进行数据分析、处理。依据一定的标准,人们可以随时随地通过终端设备查看牛的体征动态,任何一头被追踪的牛出现异常系统就会报警。在大数据分析的基础上,人们甚至可以对牛的行为方式做出预测,饲养者也因此可以改善喂养、预防疾病和改进管理。
生死畜牧公司目前正在研发的首款产品面向乳制品生产商,通过对于奶牛的追踪,最终帮助生产商提升牛奶品质和产量。“我们预计今年下半年完成最后阶段的测试,并在年底前投入商业化运营,明年我们在乳制品行业的业务将全面铺开,”沃西透露说,自2012年4月公司成立以来,生死畜牧累积获得约130万美元天使投资,“此前我们对数千家乳制品生产商的调查显示,九成以上的调查者对我们的服务非常感兴趣。”
如果商业发展如沃西的期望,生死畜牧公司将步入一个前景广阔的大市场。据美国农业部的报告统计显示,美国每年有将近四百万的动物在乳肉生产过程中死亡,同时有更多数量的动物患病。这意味着美国乳肉制品生产商每年遭受数十亿美元的经济损失,包括收入损失、极高的治疗成本和喂养成本——这数十亿美元的损失恰恰就是生死畜牧公司的发展空间。
“我们将是全球首家真正开始对牛进行大规模数据监测的软件服务公司,与以往尝试这一领域的研究机构不同,我们可以把成本做得很低,甚至达到以往的1/20,”沃西说,“对于乳制品生产商来说,他们只要按年给每头被追踪的奶牛交纳几十美元的服务订阅费即可。”
沃西颇具开拓性的商业故事不仅给包括我在内的听众带来了很多乐趣,而且也引发了我对物联网创业的几点思考。
其一,物联网时代可能给创业者提供了创造前所未有的产品创新的可能,这些产品基本特征是结合了传感器和芯片。毫无疑问,生死畜牧公司的核心——“电子药片”是开创性的产品。这项技术的发明者是沃西的合作伙伴,曾经为美国军方所用,此后因为缺乏投入项目被剥离出来,因此成就了生死畜牧公司。
“未来每一件物体都可能被集成芯片,不管是家用电器,还是大型挖掘机,甚至灯泡,”PTC全球传播副总裁斯诺(Eric Snow)说,“这一变化会彻底改变产品设计、创新的理念和方式,因而给新进入者带来很多机会。”
其二,物联网创业不再是独立的行为,与传统领域的创业相比,它需要联合、利用更多生态资源、采纳更多开放式创新。以生死畜牧公司为例,集成了传感技术、通讯技术的“电子药片”是其核心专利,而要让大数据养牛真正能够帮助乳制品生产商,仅仅依靠“电子药片”显然是不够的——这将是一个庞大的工程,包括软件、通讯、云平台以及数据分析。
“我们最擅长的是‘电子药片’,对于创业公司来说,我们很灵活、快速,但我们缺乏资源,所以必须聚焦,不可能兼顾所有。对于商业的其他方面,我们采取了合作和借用现有平台的方式。”沃西解释说。正因为如此,已经创立2年多生死畜牧公司目前仍然是一个“轻公司”,除了两位创始团队成员外,其他10多位成员为根据项目推进需求组建的临时外聘专家团队,跨越软件、通讯、畜牧等领域。
云平台是生死畜牧商业模式的重要构成,而沃西选择了提供物联网应用软件服务的PTC旗下ThingWorx平台,一站式解决了信息采集后,传播、分析和分发的过程。“ThingWorx帮助我们以最高的效率、最合适的预算完成了商业架构。”沃西说。
其三,在商业模式上,服务将是提供物联网应用和解决方案的主要方式。对于生死畜牧公司来说,他们将不再满足于将一套硬件(“电子药片”及信息收发设备)叠加系统销售给乳制品或肉类生产商,而是抓住物联网时代商业变革的机会,提供持续的服务——通过服务获取源源不断的稳定收入。
从商业发展的角度来看,订阅服务将是未来商业模式发展的大趋势,因为它对于服务提供者和使用者是共赢的:既可以给用户带来更贴近需求的满足,也可以让服务提供商的商业更加稳健、可持续。由此看来,物联网商业的开启将是服务型模式推进的一个重大契机。
在中国,从2010年上海世博会开始,物联网热便悄然升温,但目前大多数应用仍然停留在概念阶段,并没有形成真正的商业。发展迟缓的原因是多重的,但缺乏有效的生态链条或许是阻碍有创新理念的创业公司发展的关键原因之一。ThingWorx目前正准备进入中国开拓业务,相信这将为完善中国物联网发展的生态链起到一定的推动作用。
对于中国的机会,沃西表示美国市场目前仍然会是生死畜牧公司专注的市场,但他已经注意到中国乳制品行业的广阔市场空间。“到技术和商业都成熟的时候,我们完全可以在全球各地复制我们的模式。”沃西说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29