
数据工作者数据之路:从洞察到行动
数据时代来临,人人都说大数据分析,可是说到未必做到,真正能从数据中获得洞察并指导行动的案例并不多见,数据分析更多的是停留在验证假设、监控效果的层面,通过数据分析获得洞察的很少,用分析直接指导行动的案例更是少之又少。
从洞察到行动,数据可以发挥更大价值,前提是我们对数据分析有更深层的认知。
分析的四个层次
个人理解,数据分析是分层次的,从开始数据分析到促成行动达成目标,需要经历很多阶段,从上至下对应的分析层次包括:表象层、本质层、抽象层和现实层。
表象层,就像汽车仪表盘,实时告诉你发生了什么,并适时做个警报提示等等,是what。分析师要做的事情就是搭建指标体系,进行各种维度的统计分析。
本质层,像诊断仪,不再停留在观察肉眼可见的表面症状,而是去检测身体内部的问题,这个层面要揭露现象背后的动因,找到规律,是why。主要做的事情就是进行个案分析获得需求动机层面的认知,然后对个体进行聚类获得全面的洞察。
抽象层,是特殊到一般的过程,对业务问题进行抽象,用模型去刻画业务问题,是how。这个层面做的事情就是把问题映射到模型,然后再用模型去做预测,减少不确定性。其产出主要是分类(标签)和排序(评分)。
现实层,是一般到特殊的过程,将抽象的模型套用到现实中来,告诉大家如何去行动,是when、where、who and whom。就像航标,要时刻为业务保驾护航,指导业务的行动。其产出主要是规则和短名单。
在明确分析的层次后,要想从洞察到行动,需要做到四个层次的穿透和每个层次的深入。首先,分析要能够穿透各个层次,只有上下贯通,数据分析的价值才能立竿见影。其次,在分析的每个层次上要做的深入。
一、在表象层,看数据要深入。主要体现在两个方面:
1. 从“点“到”线面体“,从看一个点的数据,到看线,看面,看体。
一般来讲,想看数据的人潜意识里是要成“体”的数据的,只是沟通过程中变成了“点”的需求,因为“点”简单容易讲明白,但是,这次给不了“体”的数据,下次还会围绕“体”的数据提各种“点”的需求,这个时候我们需要延伸一下,提前想需求方之所想,就不用来回往复了。
2. 关注数据之间的逻辑关系
这方面最值得借鉴的就是平衡计分卡了,平衡计分卡从数据指标的角度去看,就是一套带有因果关系的指标体系。
平衡计分卡通过Strategy Map把策略说清楚讲明白,通过KPI进行有效的衡量,被评价为“透视营运因果关系的绩效驱动器”(政大会计系教授 吴安妮),“将策略化为具体行动的翻译机”(台大会计系教授 杜荣瑞)。
平衡计分卡对我们的启发是,人人可以梳理出一套和自己业务相关的有逻辑关系的数据指标体系,通过它实现聚焦和协同。
二、在本质层,深入理解业务模式,并跳出既有的思维模式,建立新的心智模型。
比如我们看淘宝,淘宝业务的本质是什么呢?其中一个答案是复杂系统。
大家都知道,淘宝是一个生态系统,淘宝是一个典型的由买家、卖家、ISV、淘女郎等各种物种构成的复杂系统,阿里巴巴是一个更大的复杂系统。
复杂系统对我们的启发是,关注个体(系统内部买家卖家等参与者)的同时,注意分析个体在群体中位置和角色,分析群体的发展潜力、演化规律、竞争度、成熟度等,分析群体和群体之间关系。同时,对应的抽象层建模的方法也要与之适配。
三、在抽象层,微观上构建更加抽象的特征,宏观上构建更加抽象的模型。
1. 在既有的分析和挖掘框架下,构建更加抽象的特征(也可以理解成维度、指标)。
这个可以类比现在最火的Deep Learning技术,如果对一个图片进行识别,即使你获取的是像素信息,深度学习可以自动学习出像素背后的形状、物体的特征等中间知识,越上层的特征越接近真相。
1、对我们的启示就是,在交易笔数交易金额这种“像素级别”特征(指标)的基础上,可以考虑是否交易笔数连续上升、营销活动交易占比等带有业务含义,更加抽象同时接近业务的特征(指标)。用抽象的特征去建模可以提升模型的效果,用抽象的指标去分析可以更贴近业务需求。
2.宏观方面,可以用更加抽象的方式对业务进行建模
在前面提到淘宝是复杂系统,我们也可以对复杂系统进行建模。做些适当的简化,对淘宝做一个高度抽象,那就是一个字“网”。节点是买家、卖家等物种,边就是购买、收藏、喜欢等行为产生的关系。整个淘宝就是一张大网。
图注: 不同的颜色表示不同的细分互动市场,点代表的是店铺或者会员,连线表示会员是店铺的熟客,点的大小对店铺而言代表店铺的熟客数,对会员而言代表常购买的店铺数,越接近图的中心越表示大众化的需求,越接近图的边缘越体现需求的个性化。
建立这张大网之后,我们就可以做深入的分析,比如市场细分,个性化推荐等等。
四、在现实层,要深入到业务中去,不断提升对相关业务的认知能力。
心态上不要自我设限,分析无边界,分析师要主动参与到业务模式、产品形态的规划和设计去。要了解业务,在此基础上灵活运用模型的产出,比如:一个风险控制策略,假如已经有一个风险事件打分模型对风险事件打分排序,分析师可以根据业务需求灵活设计模型的使用策略,例如,对于风险得分最高的时间,机器自动隔离,风险得分偏高的,用机器+人工审核的半自动方式进行隔离。模型是死的,活用靠人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04