京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据工作者数据之路:从洞察到行动
数据时代来临,人人都说大数据分析,可是说到未必做到,真正能从数据中获得洞察并指导行动的案例并不多见,数据分析更多的是停留在验证假设、监控效果的层面,通过数据分析获得洞察的很少,用分析直接指导行动的案例更是少之又少。
从洞察到行动,数据可以发挥更大价值,前提是我们对数据分析有更深层的认知。
分析的四个层次
个人理解,数据分析是分层次的,从开始数据分析到促成行动达成目标,需要经历很多阶段,从上至下对应的分析层次包括:表象层、本质层、抽象层和现实层。
表象层,就像汽车仪表盘,实时告诉你发生了什么,并适时做个警报提示等等,是what。分析师要做的事情就是搭建指标体系,进行各种维度的统计分析。
本质层,像诊断仪,不再停留在观察肉眼可见的表面症状,而是去检测身体内部的问题,这个层面要揭露现象背后的动因,找到规律,是why。主要做的事情就是进行个案分析获得需求动机层面的认知,然后对个体进行聚类获得全面的洞察。
抽象层,是特殊到一般的过程,对业务问题进行抽象,用模型去刻画业务问题,是how。这个层面做的事情就是把问题映射到模型,然后再用模型去做预测,减少不确定性。其产出主要是分类(标签)和排序(评分)。
现实层,是一般到特殊的过程,将抽象的模型套用到现实中来,告诉大家如何去行动,是when、where、who and whom。就像航标,要时刻为业务保驾护航,指导业务的行动。其产出主要是规则和短名单。
在明确分析的层次后,要想从洞察到行动,需要做到四个层次的穿透和每个层次的深入。首先,分析要能够穿透各个层次,只有上下贯通,数据分析的价值才能立竿见影。其次,在分析的每个层次上要做的深入。
一、在表象层,看数据要深入。主要体现在两个方面:
1. 从“点“到”线面体“,从看一个点的数据,到看线,看面,看体。
一般来讲,想看数据的人潜意识里是要成“体”的数据的,只是沟通过程中变成了“点”的需求,因为“点”简单容易讲明白,但是,这次给不了“体”的数据,下次还会围绕“体”的数据提各种“点”的需求,这个时候我们需要延伸一下,提前想需求方之所想,就不用来回往复了。
2. 关注数据之间的逻辑关系
这方面最值得借鉴的就是平衡计分卡了,平衡计分卡从数据指标的角度去看,就是一套带有因果关系的指标体系。
平衡计分卡通过Strategy Map把策略说清楚讲明白,通过KPI进行有效的衡量,被评价为“透视营运因果关系的绩效驱动器”(政大会计系教授 吴安妮),“将策略化为具体行动的翻译机”(台大会计系教授 杜荣瑞)。
平衡计分卡对我们的启发是,人人可以梳理出一套和自己业务相关的有逻辑关系的数据指标体系,通过它实现聚焦和协同。
二、在本质层,深入理解业务模式,并跳出既有的思维模式,建立新的心智模型。
比如我们看淘宝,淘宝业务的本质是什么呢?其中一个答案是复杂系统。
大家都知道,淘宝是一个生态系统,淘宝是一个典型的由买家、卖家、ISV、淘女郎等各种物种构成的复杂系统,阿里巴巴是一个更大的复杂系统。
复杂系统对我们的启发是,关注个体(系统内部买家卖家等参与者)的同时,注意分析个体在群体中位置和角色,分析群体的发展潜力、演化规律、竞争度、成熟度等,分析群体和群体之间关系。同时,对应的抽象层建模的方法也要与之适配。
三、在抽象层,微观上构建更加抽象的特征,宏观上构建更加抽象的模型。
1. 在既有的分析和挖掘框架下,构建更加抽象的特征(也可以理解成维度、指标)。
这个可以类比现在最火的Deep Learning技术,如果对一个图片进行识别,即使你获取的是像素信息,深度学习可以自动学习出像素背后的形状、物体的特征等中间知识,越上层的特征越接近真相。
1、对我们的启示就是,在交易笔数交易金额这种“像素级别”特征(指标)的基础上,可以考虑是否交易笔数连续上升、营销活动交易占比等带有业务含义,更加抽象同时接近业务的特征(指标)。用抽象的特征去建模可以提升模型的效果,用抽象的指标去分析可以更贴近业务需求。
2.宏观方面,可以用更加抽象的方式对业务进行建模
在前面提到淘宝是复杂系统,我们也可以对复杂系统进行建模。做些适当的简化,对淘宝做一个高度抽象,那就是一个字“网”。节点是买家、卖家等物种,边就是购买、收藏、喜欢等行为产生的关系。整个淘宝就是一张大网。
图注: 不同的颜色表示不同的细分互动市场,点代表的是店铺或者会员,连线表示会员是店铺的熟客,点的大小对店铺而言代表店铺的熟客数,对会员而言代表常购买的店铺数,越接近图的中心越表示大众化的需求,越接近图的边缘越体现需求的个性化。
建立这张大网之后,我们就可以做深入的分析,比如市场细分,个性化推荐等等。
四、在现实层,要深入到业务中去,不断提升对相关业务的认知能力。
心态上不要自我设限,分析无边界,分析师要主动参与到业务模式、产品形态的规划和设计去。要了解业务,在此基础上灵活运用模型的产出,比如:一个风险控制策略,假如已经有一个风险事件打分模型对风险事件打分排序,分析师可以根据业务需求灵活设计模型的使用策略,例如,对于风险得分最高的时间,机器自动隔离,风险得分偏高的,用机器+人工审核的半自动方式进行隔离。模型是死的,活用靠人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30