京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据工作者数据之路:从洞察到行动
数据时代来临,人人都说大数据分析,可是说到未必做到,真正能从数据中获得洞察并指导行动的案例并不多见,数据分析更多的是停留在验证假设、监控效果的层面,通过数据分析获得洞察的很少,用分析直接指导行动的案例更是少之又少。
从洞察到行动,数据可以发挥更大价值,前提是我们对数据分析有更深层的认知。
分析的四个层次
个人理解,数据分析是分层次的,从开始数据分析到促成行动达成目标,需要经历很多阶段,从上至下对应的分析层次包括:表象层、本质层、抽象层和现实层。
表象层,就像汽车仪表盘,实时告诉你发生了什么,并适时做个警报提示等等,是what。分析师要做的事情就是搭建指标体系,进行各种维度的统计分析。
本质层,像诊断仪,不再停留在观察肉眼可见的表面症状,而是去检测身体内部的问题,这个层面要揭露现象背后的动因,找到规律,是why。主要做的事情就是进行个案分析获得需求动机层面的认知,然后对个体进行聚类获得全面的洞察。
抽象层,是特殊到一般的过程,对业务问题进行抽象,用模型去刻画业务问题,是how。这个层面做的事情就是把问题映射到模型,然后再用模型去做预测,减少不确定性。其产出主要是分类(标签)和排序(评分)。
现实层,是一般到特殊的过程,将抽象的模型套用到现实中来,告诉大家如何去行动,是when、where、who and whom。就像航标,要时刻为业务保驾护航,指导业务的行动。其产出主要是规则和短名单。
在明确分析的层次后,要想从洞察到行动,需要做到四个层次的穿透和每个层次的深入。首先,分析要能够穿透各个层次,只有上下贯通,数据分析的价值才能立竿见影。其次,在分析的每个层次上要做的深入。
一、在表象层,看数据要深入。主要体现在两个方面:
1. 从“点“到”线面体“,从看一个点的数据,到看线,看面,看体。
一般来讲,想看数据的人潜意识里是要成“体”的数据的,只是沟通过程中变成了“点”的需求,因为“点”简单容易讲明白,但是,这次给不了“体”的数据,下次还会围绕“体”的数据提各种“点”的需求,这个时候我们需要延伸一下,提前想需求方之所想,就不用来回往复了。
2. 关注数据之间的逻辑关系
这方面最值得借鉴的就是平衡计分卡了,平衡计分卡从数据指标的角度去看,就是一套带有因果关系的指标体系。
平衡计分卡通过Strategy Map把策略说清楚讲明白,通过KPI进行有效的衡量,被评价为“透视营运因果关系的绩效驱动器”(政大会计系教授 吴安妮),“将策略化为具体行动的翻译机”(台大会计系教授 杜荣瑞)。
平衡计分卡对我们的启发是,人人可以梳理出一套和自己业务相关的有逻辑关系的数据指标体系,通过它实现聚焦和协同。
二、在本质层,深入理解业务模式,并跳出既有的思维模式,建立新的心智模型。
比如我们看淘宝,淘宝业务的本质是什么呢?其中一个答案是复杂系统。
大家都知道,淘宝是一个生态系统,淘宝是一个典型的由买家、卖家、ISV、淘女郎等各种物种构成的复杂系统,阿里巴巴是一个更大的复杂系统。
复杂系统对我们的启发是,关注个体(系统内部买家卖家等参与者)的同时,注意分析个体在群体中位置和角色,分析群体的发展潜力、演化规律、竞争度、成熟度等,分析群体和群体之间关系。同时,对应的抽象层建模的方法也要与之适配。
三、在抽象层,微观上构建更加抽象的特征,宏观上构建更加抽象的模型。
1. 在既有的分析和挖掘框架下,构建更加抽象的特征(也可以理解成维度、指标)。
这个可以类比现在最火的Deep Learning技术,如果对一个图片进行识别,即使你获取的是像素信息,深度学习可以自动学习出像素背后的形状、物体的特征等中间知识,越上层的特征越接近真相。
1、对我们的启示就是,在交易笔数交易金额这种“像素级别”特征(指标)的基础上,可以考虑是否交易笔数连续上升、营销活动交易占比等带有业务含义,更加抽象同时接近业务的特征(指标)。用抽象的特征去建模可以提升模型的效果,用抽象的指标去分析可以更贴近业务需求。
2.宏观方面,可以用更加抽象的方式对业务进行建模
在前面提到淘宝是复杂系统,我们也可以对复杂系统进行建模。做些适当的简化,对淘宝做一个高度抽象,那就是一个字“网”。节点是买家、卖家等物种,边就是购买、收藏、喜欢等行为产生的关系。整个淘宝就是一张大网。
图注: 不同的颜色表示不同的细分互动市场,点代表的是店铺或者会员,连线表示会员是店铺的熟客,点的大小对店铺而言代表店铺的熟客数,对会员而言代表常购买的店铺数,越接近图的中心越表示大众化的需求,越接近图的边缘越体现需求的个性化。
建立这张大网之后,我们就可以做深入的分析,比如市场细分,个性化推荐等等。
四、在现实层,要深入到业务中去,不断提升对相关业务的认知能力。
心态上不要自我设限,分析无边界,分析师要主动参与到业务模式、产品形态的规划和设计去。要了解业务,在此基础上灵活运用模型的产出,比如:一个风险控制策略,假如已经有一个风险事件打分模型对风险事件打分排序,分析师可以根据业务需求灵活设计模型的使用策略,例如,对于风险得分最高的时间,机器自动隔离,风险得分偏高的,用机器+人工审核的半自动方式进行隔离。模型是死的,活用靠人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12