京公网安备 11010802034615号
经营许可证编号:京B2-20210330
可视化图表表达的10个错误
数据可视化是一个沟通复杂信息的强大武器。通过可视化信息,我们的大脑能够更好地抓取和保存有效信息,增加信息的印象。但如果数据可视化做的较弱,反而会带来负面效果。错误的表达会损害数据的传播,完全曲解他们
所以优秀的数据可视化依赖优异的设计,并非仅仅选择正确的图表模板那么简单。全在于以一种更加有助于理解和引导的方式去表达信息,尽可能减轻用户获取信息的成本。当然并非所有的图表制作者都精于此道。所以我们看到的图表表达中,各种让人啼笑皆非的错误都有,下面就是这些错误当容易纠正的例子:
1、饼图顺序不当
饼图是一种非常简单的可视化工具,但他们却常常过于复杂。份额应该直观排序,而且不要超过5个细分。有两种排序方法都可以让你的读者迅速抓取最多的重要信息
方法一:将份额最大的那部分放在12点方向,逆时针放置第二大份额的部分,以此类推。
方法二: 最大部分放在12点,然后顺时针放置
2、在线状图中使用虚线
虚线会让人分心,而是用实线搭配合适的颜色更容易彼此区分
3、数据摆放不直观
你的内容应该符合逻辑并于直观的方式引导读者阅读数据。对类目进行按字母,次数或数值大小进行排序
4、数据模糊化
确保数据不会因为设计而丢失或被覆盖。例如在面积图中使用透明效果来确保用户可以看到全部数据
5、耗费读者更多的精力
要通过辅助的图形元素来使数据更易于理解,比如在散点图中增加趋势线
6、错误呈现数据
确保任何呈现都是准确的,比如,气泡图的大小应该跟数值一样,不要随便标注
7、在热图中使用不同颜色
一些颜色比其他颜色突出,赋予了数据不必要的重元素。反而你应该使用单一颜色,然后通过颜色的深浅来表达
8、柱状过宽或过窄
柱子与柱子之间的间隔最好调整为宽的1/2
9、数据对比困难
对比是呈现差异的有效方式,但如果你的读者不易对比时,效果就大打折扣了。确保数据的呈现方式一致,可以让你的读者对比
10、使用三维图
尽管这些图看来让人振奋,但3D图也容易分散预期和扰乱数据,坚持2D是王道
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12