
企业里真实的数据分析案例解析
从最近跟进一些数据分析项目来看,慢慢对数据分析有了更多的理解。
数据分析的定义和误区:
数据分析,简单来说就是用数据进行分析。经验分析也是分析,但这是靠经验分析的,不是数据分析。数据分析就必须是通过数据进行推导或验证的。所以任何数据分析工具都是数据分析的工具,不管是Excel,spss或BI都是数据分析的工具,甚至说用计算器做分析也可以是数据分析。也就证明了一些人说Excel就是报表,而不是数据分析,这是错的。
网上看最多的流程是这样的。
但其实这样才是更合理的,
数据分析不一定是一次性的,是分次数的。第一次分析会得到一些结论和猜想,然后要收集更多数据来证实自己的猜想,不然就是猜想,和经验判断没什么区别的。
数据分析如何落地
数据分析只有落地,才有价值,不然数据还是数据,还浪费了人力,物力和财力。按我公司数据分析大牛的话来讲,数据分析首先是发现问题,然后是定位问题,最后是解决问题。
1.发现异常:
发现问题就是说看出数据的波动性和不正常性。看出数据的不正常,首先要定义怎么样的数据算不正常,和平时误差的波动对比是多少,平时的数据如何定义。(补充电商很多数据都是定义波动在+- 10%内为正常,平时是指近2周的平均数据)。举个例子:本来某网站某内部渠道A的订单转化率维持是4-5%左右。有一天突然变成了2%,而近2周的数据因为前几天的数据库异常,只有近8天的数据。那怎么办呢?难道说没2周,所以问题无法发现?
这时大牛告诉我,书本上和网上你所看到的数据都是完美的,但你现在遇到的就是现实,现实就是只有近8天的数据,你这次也就只能算近8天,或者近7天。以后积累数据更多后,你分析时才用近2周。要接受数据的不完美,以后你还会遇到很多数据上的bug。那就按近7天的订单转化率去算吧。这里补充一点:订单转化率的定义=订单/二跳Visits。这点定义,不同公司定义不同,但有一点是肯定的,因为是个比率值,所有近7天的平均订单转化率不是拿近7天订单转化率算平均,而是近7天的订单数平均/近7天的二跳Visits。
总算算出来了,近7天平均订单转化率是4.5%,昨天的订单转化率是2%,变化幅度明显超过10%,绝对是个异常。
2.定位异常:
如何定位异常,大牛说你是新手,所以你去分析各个细分维度,看哪个维度内部之间有很大变化。我把能分析的维度全都做了一遍,流量外部渠道,流量平台,流量访问地区,流量进入的商品类目。因为我的Excel功底很好,这些数据处理我较快滴就完成了,然后对大牛说,外部渠道订单转化率都在降,平台,地区和商品类目转化率也都是下降,而且之间下降的幅度都是差不多的。他说,如果都是在降的话,那说明问题不是在这里。只有某个维度内部之间,变化有较大悬殊的,才能定位到问题在这个维度。比如假设,刚才的维度中你发现平台中,PC转化率大跌,无线转化率基本没变化。那说明问题很可能出在网页上面。很可能是订单确认页的网页日志记录有问题,然后被记录的订单数少了。订单转化率=订单数/二跳Visits。分子少了,也就转化率低了。而你现在是都没什么差异,那你去看看网站的订单转化率是怎么样的,还有其他内部渠道的订单转化率变化吧。我很快去提取数据并计算了,整体网站转化率没什么变化,二跳Visits流量也没什么变化。但是内部渠道中有个内部渠道C,他的转化率提升了很多,但他的流量没什么大变化。大牛说,那问题差不多出来了,很可能是内部渠道A的订单数被错误计算到渠道C了。正常情况,每个渠道的转化率都是不怎么变化的,而且你都说流量没什么变化了。是要到解决问题的时候了。
3.解决异常:
可以让IT同事看看网页日志,是不是有流量被混入到渠道C了。一个比较简单的案例到此,差不多结束了。
首先要学会接受数据的不完美,哪怕要2周,如果只有1周,也只能先当5天算。
第二了解对比要可比计算近1周或近2周的平均数据前,都要先判断有没异常值出现。
第三,发现问题后要去进行维度拆分,维度内部差异很大的,才是问题的关键点所在。
第四,除了纵向对比日期外,还有想到横向对比同级渠道,还有考虑他们上面的整体。
你目前先慢慢学会对内部渠道A进行日监控,然后有异常数据能识别,然后去定位问题。你的自动化报表设计很不错,能大大减少每天的数据处理时间,也就有更多时间去定位和分析问题。解决问题,一般来说都是比较麻烦的,要涉及跨部门的沟通交流,很多都不是数据能解决的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27