
发展大数据最大瓶颈是人才
日前在京举办的“中国国际大数据大会”上,中科院院士、北京大学教授鄂维南表示,中国大数据的前景非常广阔,市场非常大。但如何把这个广阔的前景变成现实,现在还面临数据质量不高、数据流通不畅、数据分析存技术问题等诸多瓶颈,“但最严重的还是人才问题”。
鄂维南指出,我国理论上说有很多数据,但当前存在“数据孤岛”现象,不同部门数据存储于不同的地方,格式也不一样,整合比较难。“大数据最高的层次就是要用数据来形成智慧,使得社会各方面可以运转起来。因此,做数据分析先要整合数据。”
“数据的质量也是一个瓶颈”,鄂维南强调,但这并不是说我们要有很完美的数据才能做分析,完美的数据永远是等不来的,做数据分析的出发点是有多少数据可以做多少事。“此外,数据的拥有方,像电信、联通,和数据分析者中间有一个很大的鸿沟,双方存在沟通障碍。”
那么,怎样才能够让数据流通起来?鄂维南介绍,目前大家想到的是数据开放,现在政府也在呼吁开放,但数据开放面临严重的隐私问题。严格来说,想靠法律办法解决隐私问题并不可能,这是数据开放面临的现实问题。
另外,现在还存在这样一种情况:即数据拥有方习惯于自己建一个团队自己来做数据分析,但实际上数据分析是一个技术活。“现在我们的大数据分析公司风起云涌,什么人都可以做,没有什么技术含量,但是长远来说这条路走不通。我觉得数据行业服务最重要的是提高门槛。”鄂维南说。
“技术问题也是瓶颈。数据分析本身就是一个难题,另外中国的数据有它自身特色。”鄂维南说,从文本分析来看,我们用中文,美国用英文,两者的文本并不一样,不能完全套用国外模式。此外,我国的数据质量比较差,这个时候就需要对算法和模型进行改进。同时,数据服务作为一个业务模式,其商业模式还没有真正被认可,“数据通过什么方式赚钱,前景还不是那么清楚”。
“当然,最严重的问题是人才问题”,鄂维南指出,我国大数据发展最大的优势是市场大,最大的劣势是缺乏人才。由于大数据产业的火热,目前即使在国外,学术界跟企业界之间的人才竞争也非常激烈,在国内同样如此。并且我国目前没有非常好的培养大数据人才的机制。“本来我国教育界、科技界的人才就缺乏,而在大数据领域,统计、机械学习等相比而言更弱,所以这个问题需要引起重视。”鄂维南说。
“我个人的感觉是,我国大数据市场非常大,但要真正落到实处,要做的事情还非常多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14