京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS市场研究应用介绍:多维偏好分析
多维偏好分析(multidimensional preference analysis)介绍
在联合分析中,被访者需要描述他们对产品的偏好情况,这些产品有若干实验者事先决定的属性。但有时候,这些属性并不为被访者所知,多维偏好分析(multidimensional preference analysis,简称MDPREF)就是分析这种情况下产生的数据。
有时,在市场调研,现有的数据包括消费者的喜好,为产品的属性没有定义。多维偏好分析(MDPREF)是用来分析这些数据。 MDPREF分析是符合消费者与产品对应的行与列的数据矩阵的主成分分析。在一个情节,揭示了消费者对产品的偏好模式的分析结果。以下是一些回答问题,可以用一个多维偏好分析。
多维偏好分析常用于分析消费者对产品与服务的偏好倾向,在市场研究中能具体解决如下问题:
a) 圈定目标消费群体
b) 市场上哪些品牌的竞争激烈
c) 探索市场的空白区域
d) 消费群体的分类
e) 品牌评价
二多维偏好分析基本思想与过程
多维偏好分析通过收集消费者对一组产品/服务的偏好数据(以0-10/1-10的量表).,然后用降维(主成分分析)的思想,将多元数据变成通过二维图形显示的直观结果。
多维偏好分析采用的统计思想就是主成分分析法,因而必须对主成分分析法有一个初步的了解。主成分分析法就是将原来众多具有一定相关性的指标(如p个指标),重新组合成一组新的相互无关的综合指标来代替原来的指标。
分析的主要过程:
三SAS中操作案例
MDPREF是一种主成分分析,矩阵中的列对应着人,行对应着要研究的主题,如汽车的偏好。是一个人*主题的转置,分析时注意格式要正确。
以SASUSER中的CARPREF为例,数据储存了25个被访者对17种汽车偏好的数据,偏好有0-9级得取值,0代表非常弱的偏好,9代表非常强的偏好。选择数据集和分析方法后进入变量窗口:
按照上图,将judge1-25选入preference窗口等,维度的选择可以增加,scree plot提供了每个主成分的特征值,可以参考判断选择几个维度。此例中,两个维度足够。点击OK,结果如下图所示:
结果图中包含了17种汽车点,25个被访者向量。两个维度的解释为:1)竖直维度将外国和国产车分开,正数代表外国车,负数多为国产车(美国?)。2)水平维度将大型车和小型车分开,右边多是大型车,左边多是小型车。每个被访者都偏好与接近他们向量的车型。但是注意右上部分,有很多的向量,但是却没有车型,这恰恰说明了市场空缺,还未出现有效产品来满足这部分消费者需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27