
大数据时代,大数据在物流行业的应用以及影响
物流业是一个产生海量数据的行业,大数据在物流企业的广泛应用,对于企业动态适应多变的市场环境、满足日趋个性化的顾客需求、应对激烈的市场竞争都具有重要意义,也将对物流企业战略决策、运营管理、市场营销、品牌管理、客户关系管理、服务创新等方面产生深刻的影响。对整个行业来说,也有助于物流资源优化配置、物流产业的升级转型。本文在分析物流行业大数据特点及其在物流行业的应用特性的基础上,研究了大数据应用技术对物流企业竞争力的影响。首先,我们了解一下什么是大数据?
大数据(big data),指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理的时间内达到撷取、管理、处理并整理成为帮助企业经营决策更积极目的的资讯。
相对于传统的数据库应用,大数据分析具有数据量大、类型多样、价值密度低、处理速度快等特点。
现今大数据在经济、政治文化等各个领域都得到一定的应用,并产生了深远的影响。物流行业联系着各大企业、公司、商家、家庭和个人,所涉及的数据量非常大且具有一定价值。而大数据恰恰能对这些数据进行快速高效的处理,得到正确有用的信息,对物流行业发展具有重大意义。
1.降低物流成本,提高配送效率
大数据涵盖了许多高新技术,主要包括大数据存储、管理和大数据检索使用(包括数据挖掘和智能分析)等技术。这些技术对物流行业发展的各个环节都有着重要的影响。如采集信息端中的识别、定位和感知,传输信息中的移动互联网技术,以及数据应用和开发方面,将会出现越来越多的数据中心。通过在这些环节中对大数据的充分利用,物流企业可以有效的管理公司员工,快速制定出高效合理的物流配送方案,确定物流配送的交通工具、最佳线路,进行实时监控,很大程度上降低物流配送的成本,大大提高物流配送的效率,给客户提供高效便捷是服务,实现与用户之间的双赢。
2.推动“大物流”体系的形成——菜鸟网络
大数据时代的到来,有效推动“大物流”体系的形成,实现物流行业的巨大变革。所谓“大物流”是指企业的自有物流(人员、车队、仓库等)和第三方物流企业的配送信息与资源共享,以实现更大限度的利用各方面的资源,降低物流成本。社会“大物流”形成之后,企业可以和第三方物流公司合作,物流企业直接面对市场,它根据市场的需要来组织调控若干生产企业的大管家,既负责“后”勤,有负责“前”勤。这样物流企业才会充分合理有效地组织利用资源,既保证自己的经济效益,又保证生产企业的经济效益,从而避免各种问题的产生。
以菜鸟网络——阿里巴巴与多家快递公司成立新公司“中国智能骨干网”为例。菜鸟网络专注打造中国智
能物流骨干网将利用先进的物联网技术、云计算等各项互联网技术,建立开放、透明、共享的数据应用平
台,从而为物流公司、电商企业、仓储企业、第三方物流服务商、供应链服务商等各类企业提供优质服
务,支持物流行业向高附加值领域进一步发展和升级。
3.从价格竞争转向价值竞争
随着近几年电商行业的飞速发展,物流的强大需求确实存在。但这并不意味着物流快递企业们能相安无事地一起分享大蛋糕。相反,目前我国物流快递行业竞争越来越激烈。要想在竞争中占据大的市场,获得更大的利益,各大企业必须要从价格竞争转向价值竞争,提升自己的服务质量。因而物流快递业应该加快引进大数据云计算等技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10