
游戏数据分析基本思路与方法
数据分析是产品运营极具战略意义的一环;从宏观到微观分析,通过表层数据挖掘产品问题,是每个运营人的必修课。
首先,我们来看比较常见的分析方法:
5W2H分析法:What(用户要什么?)Why(为什么要?)Where(从哪儿得到?)When(我们什么时候做?)Who(对谁做?)Howmuch(给多少?)How(怎么做?)
PS:(what)用户要极品装备!(why)因为他们要增强战力(where)装备从BOSS身上得到;(when)我们国庆节做这个活动!(who)针对所有玩家!(howmuch)BOSS爆率设定为XX(how)活动以怪物攻城形式进行。
上述是一种需求的转换形式,就产品而言,又要以数据为支持,不能因某个元素而动整体;从大局出发,根据整体数据趋势进行细化分析,那么就目前而言的分析手法,又有对比分析、交叉分析,相关分析,回归分析,聚类分析等等。
如果某款游戏下载量高,注册量低;是否因为服务器登陆问题或注册流程繁琐,是否近期网络出现故障........
如果某款游戏数据一直良好,某段时间数据突然跌落;是否因为市场宣传力度减弱,是否因为用户生命周期上限,是否因为其他竞品冲击........
真正的数据分析不在于数据本身,而在于分析能力的概述;数据是参照物,是标杆,只有分析才是行为,是改变;那么如何分析,综合上面两个举例,已经可以很清晰的看到立体式分析。
立体式分析,也就是维度分析;产品数据的发掘不应该仅仅拘泥于产品;大环境下的娱乐产物必须综合产品、市场、用户进行不同切入点分析;要知道,数据分析是基于商业目的,而商业离不开用户和市场;说白了就是结合不同维度进行有目的的数据收集、整理、加过和分析,他的存在价值就是通过数据提取有价值的信息去优化产品从而拉更多人,赚更多钱。
那么如何分析,大致思路又是如何?
[为什么分析?]
首先,你得知道为什么分析?付费同比、环比波动较大?
[分析目标是谁?]
数据波动,目标是谁?付费总额波动,付费用户数据如何?
[想达到什么效果?]
通过分析付费用户,找到问题,解决问题从而提升收入?
[需要什么?]
想做出分析,需要什么?付费总额,付费人数?付费次数?付费人数各等级占比?
[如何采集?]
直接数据库调取?或者交给程序猿导出?
[如何整理?]
数据出来,如何整理付费等级、付费次数报表?
[如何分析?]
整理完毕,如何对数据进行综合分析,相关分析?用户资源是否饱和?市场其他明星产品充值活动更具吸引力?产品付费系统是否出现问题,是否失去新鲜感?
[如何展现?]
找准问题,老付费用户流失了很多,低端付费转化低;很多是多少?转化低是什么概念?如何用图表表现?
[如何输出?]
找准问题,如何输出;如何将这份知识报表转换为产品商业价值体系;如何说服程序?如何说服策划?如何具体执行?如何将知识转换为生产力?
上述是比较系统的分析思路,细化而言;对于数据分析,又需要我们根据不同人群建立不同的用户模型;例如流失模型、流失特征;充值模型等等。
接下来我们再综合AARRR模型分解一些较为常见的数据:
Acquisition(获取)、Activation(活跃)、Retention(留存)、Revenue(收益)、Refer(传播)
上图为AARRR模型中的基本数据,结合小白学运营数据篇的系列文章,我们再对以往数据进行总结:
日新增用户数:DNU;每日注册并登陆游戏用户数,主要衡量渠道贡献新用户份额以及质量。
一次会话用户:DOSU;新登用户中只有一次会话的用户,主要衡量渠道推广质量如何,产品初始转化情况,用户导入障碍点检查。
日活跃用户:DAU;每日登陆过游戏的用户数,主要衡量核心用户规模,用户整体趋势随产品周期阶段变化,细分可概括新用户转化、老用户活跃与流失情况。
周/月活跃用户:WAU、MAU;截止统计日,周/月登陆游戏用户数,主要衡量周期用户规模,产品粘性,以及产品生命周期性的数据趋势表现。
用户活跃度:DAU/MAU;主要衡量用户粘度,通过公式计算用户游戏参与度,人气发展趋势,以及用户活跃天数统计。
留存:次日、三日、七日、双周、月留存;表现不同时期,用户对游戏的适应性,评估渠道用户质量;衡量用户对游戏黏性。
付费率:PUR,统计时间内,付费用户占活跃用户比例;主要衡量产品付费引导是否合理,付费点是否吸引人;付费活动是否引导用户付费倾向,付费转化是否达到预期。
活跃付费用户数:APA;统计时间内,成功付费用户数,主要衡量产品付费用户规模,付费用户构成,付费体系稳定性如何。
每活跃用户平均收益:ARPU;统计时间内,活跃用户对游戏产生的人均收入,主要衡量不同渠道的用户质量,游戏收益,以及活跃用户与人均贡献关系。
每付费用户平均收益:ARPPU;统计时间内,付费用户对游戏产生的平均收入,主要衡量游戏付费用户的付费水平,整体付费趋势,以及不同付费用户有何特征。
平均生命周期:TV;统计周期内,用户平均游戏会话时长,主要衡量产品粘性,用户活跃度情况。
生命周期价值:LTV;用户在生命周期内,为游戏贡献价值;主要衡量用户群与渠道的利润贡献,用户在游戏中的价值表现。
用户获取成本:CAC;用户获取成本,主要衡量获取有效用户的成本,便于渠道选择,市场投放。
投入产出比:ROI;投入与产出关系对比,主要衡量产品推广盈利/亏损状态,筛选推广渠道,分析每个渠道的流量变现能力,实时分析,衡量渠道付费流量获取的边际效应,拿捏投入力度,结合其他数据(新增、流失、留存、付费等)调整游戏,进行流量转化与梳理。
最后便是一种较为常见的数据分析手法:杜邦分析法
以上是关于数据的一些概括,对于数据分析,需要我们以理性的眼光对待;因为各家对相关数据定义不同,算法不同;在对数据进行分析时需要我们看清分析误区,综合其他数据进行分析,根据自己的数据分析思路制定相应的分析方案,切不可盲目分析,粗暴分析。
最后值得注意的是精细化的运营数据分析工作,思维不能乱,思维乱了,全盘皆乱;这时候的数据分析也无法提供正确的考量价值,如果觉得数据分析毫无头绪,杂乱无章;冷静下来,理顺思路,有大概的数据构思之后再做行动;只有这样才能培养自己严谨的逻辑分析能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14