
如果这个问题换做是:在电气时代,每家公司都要有个发电厂吗?是不是会更好回答一些?
事实上每一种重大技术的出现,都会对产业产生大的变化。在蒸汽时代,采矿机采用蒸汽机后,会带来生产效率的极大提升,而轮船加上蒸汽机,再也不需要靠风才能航海了。在电气时代,电灯代替了蜡烛,电报代替了快马送信,而报纸也被广播和电视所侵蚀。
可以说是现有产业加上新技术,形成了新产业。
我们回过头来看这两次工业革命,生产蒸汽机的企业只有少量几家,而发电的企业在美国也只有通用电气和西屋电气。并不是每家企业都要从事这些基础设施的研发和生产,更多的是对新技术加以应用,发挥新技术带来的价值。
在IT领域,软件刚出来时,可以说是计算和存储完全混杂在一起。有人尝试将计算硬件进行分离,歪打正着成就了 Intel。有人尝试将存储系统分离,因而有了 Oracle。
Intel 和 Oracle 固然伟大,但它们的价值更多的还在于有广大的企业采用了这些新的技术,在具体的行业中,产生了更大的价值。
同样,云计算这种理念固然是好,但如果每家企业都建立自己的云计算中心,从资金和人力投入上,一定是不划算的,更严重的问题是做不到最优。相反,有了 AWS 和阿里云这样的云计算提供商,让中小企业更便捷的进行创新应用。
回到题目中的问题,在大数据时代,每家公司都要有自己的大数据部门吗?结论也不能下的太武断。
早在2008年,云计算的概念刚刚兴起,百度内部出现了两拨势力。一拨要从零开始打造自己的大数据底层技术,把 MapReduce、GFS、BigTable 这些组件都要实现一遍,结果花了两三年时间,也没能稳定运行。
而另外一拨势力,直接采纳开源的 Hadoop 生态,很快在公司内应用起来。而我当时做的日志统计平台,也是采用了 Hadoop。但百度的数据规模毕竟太大了,所需的集群规模,开源版本根本撑不住,于是不得不改写 Hadoop,这样就和开源的版本渐行渐远,等到后来再也合不到一起了。
曾经有一年多的时间,我们部门新设计和实现和底层的存储及计算系统,结果发现开源的版本也差不多实现到了同样效果。虽然许多内部的人觉得我们怎么总重复造轮子,但我明白还是需求使然,你面临的需求相对领先,但也没有领先到像 Google 那样提早 5 年。
但对于小公司来说,则完全没必要从零开始做,还是要尽量用开源的产品。
整个 Hadoop 生态,要比我 2008 年刚用的时候,要成熟很多。那个时候我们去拿开源的版本,编译部署,一个新手可能两周都不一定能正常的运转起来。而现在下载一个 Cloudera 发行版,两个小时就可以正常跑任务了。
与此同时,又面临了新的问题,因为大数据平台牵涉到数据的采集、传输、建模存储、查询分析、可视化等多个环节,而开源领域只是一些组件,于是各家公司都在纷纷打造自己的大数据平台,这就像 Oracle 之前,各家都在打造自己的存储系统。这显然不是一件性价比高的事情。
有市场需求,就会有满足相应需求的公司诞生,于是就诞生了一堆提供大数据服务的公司。
由于这一新领域还处于早期,这些创业公司所能提供的服务并不会特别的完善,要么是以项目制的方式运转,要么是提供专门应用场景的服务。
这样,对于一些企业来说,这些创业公司提供的服务,似乎自己也能实现,那何不干脆自己做?
这创业一年多以来,我看到了太多的公司在打造自己的数据平台,但做的还不够完善。不管是技术实力还是人力投入上,都有点力不从心。如果选用了这些第三方数据服务,那岂不饭碗被抢了?
可我要说的是,饭碗早晚都会被抢,只是时间早晚的问题。这里只需要问一个问题:我所做的数据平台,是不是其他公司也是类似的需求?如果是的话,那肯定也有其他公司做着类似的事情,做的东西会大同小异。
那么,就会出现专门的公司,来解决这种通用的需求。因为这些公司专注于解决这一块问题,所以会更加专业,并且舍得投入。而对于需求公司来说,除非自己转型去专门做大数据平台,不然在投入上,肯定不是一件性价比很高的事情。与其如此,不如及早侧重于自己的核心业务,关注应用需求本身。
那对于企业来说,在大数据时代,应该怎么做呢?我的建议是三点:
首先,要拥抱大数据技术。
新的重大技术出现,都带有颠覆性。一不小心,就会被革命。但也不是说企业已有的业务不用搞了,都来搞大数据吧。
在大数据这件事上,还是要从需求出发,而不是从大数据出发。
有人会问我,我有了一些数据,给我讲讲怎么能发挥更大的价值。坦率来说,许多时候不了解业务场景,很难提出建设性的意见的。
相反,我们要先看在企业满足客户需求的时候,还有哪些重大问题没有解决好,如果采用了大数据技术,是不是可以更好的解决?如果有这样的点,那非常好,就勇于去尝试。如果没有,那就继续学习大数据的知识,再等待这样的场景出现。
其次,企业要有懂大数据的人。
这种人不一定是全职的,但至少是可以将企业的业务和大数据技术结合起来的人。这种人不一定对大数据技术本身很懂,但善于使用新技术。
如果企业现在还没有,并且还没招到。可以去培养一个头脑灵活,乐于学习新技术的人。如果抛开大数据系统的实现挑战,理解大数据的应用场景,那难度会降低不少。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07