
用大数据改进制造业必须掌握的3大要领
站在历史的角度看,一部人类史在某种程度上就是一部收集数据、分析数据、沉淀数据的历史。数据在人类的生产、生活中扮演着重要的角色,但由于技术水平的局限,在漫长的时间里,人类所产生的数据十分有限,然而,伴随着互联网的发展,特别是移动互联网的发展,人类迎来了一个前所未有的大数据时代。
过去30年,发达国家研发、消费,资源国家提供能源和原材料,中国加工制造的全球制造产业链正在发生变化。2008年金融危机后,全球经济陷入低迷,美国提出再工业化,德国进行工业4.0升级,日本发布制造业白皮书,发达国家欲重拾制造业的趋势愈加明显。另一方面,印度、越南正在成为全球新的制造业中心。这意味着我们曾经引以为豪的“中国制造”正面临着一系列的挑战。因此,如何利用新技术对我国制造业做全面的改造,以恢复“中国制造”的竞争力,在如今看来具有十分重要的现实意义。
马云在多个场合提出一个观点——人类正从IT时代走向DT时代。数据将成为未来最重要的生产资料,整个世界都将发生翻天覆地的变化。对数据的把握与利用不仅影响着人类的生活,也影响着未来制造业的发展方向。
提升效率,降低成本
到17世纪初,西方人均收入水平用了800年时间才翻了一番,而在随后的150年内,人均收入水平增长了13倍。
这一切的发生源于开始于18世纪中期的工业革命,大量机械的出现令人类的劳动效率有了飞速的提升。每一次工业革命的爆发,就意味着人类的劳动效率即将迈上一个新的高度。
2008年的金融危机使得全球经济陷入困境,但往往是绝望中也孕育着希望。为摆脱危机,全球技术创新渐趋活跃,新产业、新技术、新模式层出不穷。这成为了即将开始的第四次工业革爆发的导火线。
随着物联网、移动互联、智能机器人等新兴技术的飞速发展,制造型企业所面临的数据呈现爆炸式增长。所有的生产设备、感知设备和终端设备都在源源不断地产生数据,这些数据将渗透到企业的生产、运营等各个环节之中。传统制造业要完成蜕变式升级,对数据的收集、分析和利用是关键所在。
为用户提供价值是企业存在的根本,也是企业价值的来源。制造企业可以利用大数据技术对生产流程进行优化设计,以定制化的产品和服务来满足用户的个性化需求。另一方面,企业通过对市场数据的收集、分析、整理能够对市场变化做出准确判断,从而及时调整企业战略和资源配置,实现由大规模同质化生产向规模化定制化生产的转变。
在传统制造企业里,数据被分散在用户、合作伙伴以及企业的各个部门当中,这使得企业在获取数据的过程中要花费大量的成本。而大数据技术的出现就使得企业能够将所有数据轻松集中到一个平台上,确保企业内所有部门都能围绕着相同的数据展开协同工作,提升企业的运营效率,降低决策失误和部门沟通不畅所带来的成本损失。
增强创新
创新是企业不断前行的不竭动力。但对于企业,尤其是制造型企业来说,创新是一件艰苦而又高风险的事情。不仅需要前期投入大量的人力、财力、物力来研发,然而,即使能够开发出新的产品或服务,是否会被市场认可还是未知数。
大数据赋予了制造型企业更强的创新能力,在传统制造业中,用户仅仅是购买企业生产出的产品,而是参与到了研发、生产、营销等多个环节当中,在这个过程中将产生大量数据,运用好这些数据,就能从中洞察到最佳方案,从而创造出创新的产品和服务,令企业拥有之前不曾拥有的创新能力。
目前正在进行的第四次工业革命是基于信息物理系统(CPS)的智能化生产模式,使得企业拥有了随时收集、处理、分析和利用数据的能力。这意味着制造型企业不再是一个纯粹的生产者,而是成为充分利用大数据、移动互联网等技术的服务型企业。
对数据的实时把握能力创造了一种全新的跟踪服务模式。过去制造型企业就是在卖产品,产品到了用户手里,只要不出质量问题,那么至此就与企业无关了。然而,如果采用跟踪服务的模式,则产品卖出不仅不是结束,恰恰是一个新的服务阶段的开始。企业可以根据产品和用户的反馈数据,为用户提供有针对性的服务,从而令用户获得更好的服务体验。
有了大数据技术的支撑,企业具有了整合来自研发、生产、管理、营销等多方面的数据的能力。由此使得企业可以根据需要打破原有的窠臼,对业务流程和组织架构再造,以符合制造行业的新要求。
保障数据安全
数据在制造业中的充分应用为企业带来效益提升,创新能力增强的同时,也会使企业遭遇数据的烦恼。大数据技术要发挥效用,那么就要求企业完成数据化,这其中自然也包括商业秘密和技术专利等与企业生死存亡密切相关的敏感数据。因此,保护数据的安全成为企业必须有效解决的事情。
数据安全首先应受到企业领导层的高度重视,通过宣传、教育等多种方式使得所有员工都能拥有数据安全意识和基本的常识,制定并完善信息数据安全制度,加强日常的监督管理,从源头上降低企业信息数据泄露的风险。
对数据安全的保护仅仅依靠提升安全意识、掌握基本常识和制定安全制度是远远不够的。近年来网络攻击、软件漏洞等都在成为企业数据安全的重大威胁,这使得运用最新技术保护数据安全变得十分必要。
传统的安全防御技术难以应对不断升级的互联网攻击手段,而大数据技术可以对攻击事件的模式、时间和空间上的特征进行处理,总结抽象出一些模型,进而形成大数据安全工具,以消除和控制不断升级的互联网攻击手段所带来的危害。
结语
正在轰轰烈烈进行的第四次工业革命不仅是技术的升级,更是商业模式和企业组织的变革,但就其本质而言是人的思维和价值观的变革。中国制造要完成升级转型,思想或许比技术更重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10