京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS的Frequencies过程
第一、选择Statistics
第一组:
Percentile Value(百分位数组)
Quartiles:四分位数
Cut points for equal groups:将数据平分为所设定的相等等分,本例输入6,那么数据将会被六等分。
Percentiles:自己定义的百分位数
第二组:
Dispersion(离差)
第三组:
Central Tendency(中心趋势)
第四组:
Distribution(分布参数)
Skews:偏度
Kurtosis:峰度
选项Values group midpoints用于选择是否对数据进行分组。
第二、选择了Charts
None:不输出图形
Bar:条形图
Histogram:直方图,选择此项还可选择 with normal curve 表示带有正态曲线
Axis Label Display:垂直轴表示的统计量
第三、选择了Frequencies Format
Order by组:设定频数表中变量排序。
Descending Values:变量值降序。
Descending Counts:频数降序。
Ascending Values:变量值升序,为默认值。
Ascending Counts:频数升序。
page format组:设定页面格式组。
Standard 标准格式,在页面允许范围内显示尽可能多的频数,为默认值。本例中选取默认值。
Condensed 压缩格式,输出结果时仅输出3列.
Best fit 优化格式,根据情况自动使用压缩格式。
Suppress tables with more than n categories 控制频数表输出范围。
Display index用于设定显示变量的字母位置及输出位置。
Display value labels用于显示数值标签的前20个字符;
第三步,进行次数分布操作步骤为
step1:按Statistics ->Summarize->CROSSTABS,打开CROSSTABS对话框。
step2:从左侧变量框中选择Sex进入Row(s)框内作为分布表中的行变量,选择Score 进入Column(s)框中作为列变量。
step3:提交运行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27