京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么数据分析不能代替思考
在设计工作中,越来越多的场景是,我们根据用户使用产品产生的数据来直接判断我们的设计。甚至有时候,产品经理和设计师并没有完全了解数据的真实含义,就直接根据数据来修改我们的产品设计。这是非常危险的。本文简洁明了地阐述了数据不能代替思考这个道理。yoyo读完深有同感,并记录一些真实工作例子来思考这个论点。很喜欢本文中的一句话:当我们要求更多数据进行分析之前,我们需要先了解自己。
作者开篇引用了一些关于大数据的观点,例如,传说中的大数据,让科学过时。大数据让很多学科没有存在的意义,例如,遗传学,语言学,社会学。Wired的编辑Anderson说:“当数据充足的时候,数字就可以代表一切,自我论证,得出结论。”
作者也引用了去年一位CEO的观点:“我相信数学已经胜过科学。你已经不需要去了解为什么,你只需要知道A,B两个事件发生后,C会发生。”
作者认为以上的观点在某种程度上是真实的。科学的分析方法可以帮助我们观察,假设,测试,与分析,而足够的数据以及强大的电脑分析能力让以上步骤简单而成本低,效率更高。例如,A/B tests,像Google与Amazon这样的大公司可以提供给不同用户群体不同的页面布局,来测试哪种布局得到的效果更好,然后选择效果好的版本来作为最终版本。这个方法已经在很多公司普遍流行。
但是,这样的方法一定是有效的么?作者认为,这样并不能说明这个测试过程是完全科学且没有任何假设的。我们人类最擅长在事实发生后编一个故事。而在以上场景中,我们只是把编故事的时间挪到了事实发生之前。
在大数据时代,我们的假设以及说故事的能力,是与数据分析息息相关的。
所以,作者引出另一种观点:
数字不可以代表一切,自我论证,得出结论;数字是我们讲故事的依据。数据驱动的预测方式可能成功,也可能失败。当我们要求更多数据进行分析之前,我们需要先了解自己。
作者最后总结,我们对事物的发展总是有自己的主观意见。我们应该合理使用数据来修正我们的思考,但是这个模式成功的前提是,我们必须在分析数据前要先思考。
-------------- 数据不能代替思考是无比真实的分割线 --------------
简短的文章描述的论点很鲜明,我这里理解到有用的点是:数据分析是一个很强大的工具,也是未来的趋势,但是在数据分析的整个过程中,包括前,中,后,人类的思考才是核心。脱离了思考的数据分析,带来的是不可预测的结果。数据分析不能代替思考这个过程。
先讲一个例子,非常吻合本文的论点。以下是我4年多前在雅虎移动搜索做的“直接搜索”,流程是,用户在手机上搜索“Weather”,手机自行判断本机位置,然后展示当地的天气。下面例子是在旧金山搜索“Weather”得到的页面的顶部,这个区块往下就是正常的10个blue links。
当时雅虎移动搜索类似这样的“直接搜索”有30多个,包括本地商务,天气,星座,明星,音乐,购物等等。有一天,产品经理拿着这30多个“直接搜索”的数据来找我,说:
“yoyo,你看,天气的直接搜索,点击率是最低的,只有不到1%,我们是不是应该删除这个直接搜索,这个直接搜索没用。”
我第一时间心理反应是:“什么?这个直接搜索应该是非常有用的,业界研究表明用户对天气搜索的需求是手机搜索的前几类,也符合我自己对这个产品设计的认知,数据怎么这么低?”
“不能完全依赖这个数据来决定”,我告诉自己,然后想了一下,了解了为什么数据会偏低,然后告诉产品经理:
“数据低就对了!我们做“直接搜索”的价值,就是希望提供给用户10个blue links之外,给用户提供直接展示的答案,减少用户点击links到下一页的场景。这个天气搜索的场景,用户搜索天气,看到了答案,52度,他们不需要再往下走了,一部分用户希望了解后七天的天气,才会点击进入看完整天气预报,但是大部分用户看到答案就会满足,完成任务,数据低反而证明了我们产品设计是成功的。”
产品经理想了想,认同了,我们又聊了一会儿,共识是,如果每个产品设计决策都是纯粹依照数据而不思考,得有多少奇怪,错误的决策发生啊!
思考还能带来选择完整数据的好处。例如做电商网站,搜索“电视机”,得到的搜索页面。页面布局可以生成一张热图,来展示用户点击各个区块的点击率。如果不思考,纯粹以点击率多少来修改页面布局,结果一定是最好的么?当然不是。电商需要的是用户进行购买,产生商业价值。而商业价值相关的应该是购买转化率。所以思考后,发现电商网站的布局不能光看点击率,还要加入购买转化率一起思考。
数据分析中,选择数据是关键,不经过思考地选择数据,会出现两种不好的情况,一种是选择不足,得出结果不准确,一种是选择过多,无法得出单一结果。
当然,提倡思考不代表让我们固执。我们有时在数据分析会犯一个错误,就是主观地想好了一个论点,然后自己去挑选数据来论证自己。这个也是数据分析的经典错误。如本文所说,数据分析是辅助我们思考的有效方法,而不是不择手段证明自己观点的工具。
诚然,用户使用产品产生的数据是我们设计师最宝贵的第一手资料。但是如何使用这些数据,如何分析数据来增益产品设计,是一个很严谨的过程。我们在主动思考与客观分析数据的过程中,不能犯一丝错误,才能得到最佳结果。古人云“失之毫厘,谬以千里”,大致是这个意思。:)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07