京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘系统的分类
数据挖掘是一个交叉学科领域,受多个学科影响,包括数据库系统、统计学、机器学习、可视化和信息科学。此外,依赖于所用的数据挖掘方法,可以使用其他学科的技术,如神经网络、模糊和/或粗糙集合论、知识表示、归纳逻辑程序设计或高性能计算。依赖于所挖掘的数据类型或给定的数据挖掘应用,数据挖掘系统也可能集成空间数据分析、商务智能产品信息检索、模式识别、图像分析、信号处理、计算机图形学、Web技术、经济学、商业、生物信息学或心理学领域的技术。
由于数据挖掘源于多个学科,因此数据挖掘研究期望产生大量的各种类型的数据挖掘系统。这样,就需要对数据挖掘系统给出一个清楚的分类。这种分类可以帮助用户区分数据挖掘系统,确定最适合其需要的数据挖掘系统。
根据不同的标准,数据挖掘系统可以分类如下:
1)根据挖掘的数据库类型分类:数据挖掘系统可以根据挖掘的数据库类型分类。数据库系统本身可以根据不同的标准(如数据模型、数据类型或所涉及的应用)分类,每一类可能需要自己的数据挖掘技术。这样,数据挖掘系统就可以相应分类。
例如,根据数据模型分类,可以有关系的、事务的、对象-关系的或数据仓库的挖掘系统。如果根据所处理数据的特定类型分类,可以有空间的、时间序列的、文本的、流数据的、多媒体的数据挖掘系统,或万维网挖掘系统。
2)根据挖掘的知识类型分类:数据挖掘系统可以根据所挖掘的知识类型分类,即根据数据挖掘的功能分类,如特征化、区分、关联和相关分析、分类、预测、聚类、离群点分析和演变分析。一个综合的数据挖掘系统通常提供多种和/或集成的数据挖掘功能。
此外,数据挖掘系统还可以根据所挖掘的知识的粒度或抽象层进行区分,包括广义知识(高抽象层)、原始层知识(原始数据层)或多层知识(考虑若干抽象层)。一个高级数据挖掘系统应当支持多抽象层的知识发现。数据挖掘系统还可以分类为挖掘数据的规则性(通常出现的模式)与挖掘数据的奇异性(如异常或离群点)。一般地,概念描述、关联和相关分析、分类、预测和聚类挖掘数据的规则性,将离群点作为噪声排除。这些方法也能帮助检测离群点。
3)根据所用的技术类型分类:数据挖掘系统也可以根据所用的数据挖掘技术分类。这些技术可以根据用户交互程度(例如自动系统、交互探查系统、查询驱动系统),或所用的数据分析方法(例如面向数据库或面向数据仓库的技术、机器学习、统计学、可视化、模式识别、神经网络等)描述。复杂的数据挖掘系统通常采用多种数据挖掘技术,或采用有效的、集成的技术,结合一些方法的优点。
4)根据应用分类:数据挖掘系统也可以根据其应用分类。例如,可能有些数据挖掘系统特别适合金融、电信、DNA、股票市场、e-mail等。不同的应用通常需要集成对于该应用特别有效的方法。因此,泛化的全能的数据挖掘系统可能并不适合特定领域的挖掘任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27