
什么样的基础设施适合快速和大数据架构
为大数据和较新的快速数据架构提供基础设施并不是一个饼干切割的问题。两者对硬件和软件基础设施都有着显著的调整或改变。
较新的快速的数据架构与大数据架构有着显著区别,并且快速数据提供了真正的联机事务处理工具。理解大数据和快速数据需求的变化能够帮助你做出正确的硬件和软件选择。
大数据架构
相比企业在以往通常收集数据的方法,大数据是通过更大的数据容量,分析和获得更大的洞见的过程,大部分的数据(例如,社会媒体有关客户的数据)是可访问的公共云。这一数据,反过来,强调快速访问,不再强调一致性,也造就了如Hadoop这样一系列的大数据工具。因此,架构中的如下变化和重点是普遍的:
支持内部软件,如Hadoop和Hive,以及横向扩展的云功能硬件,用于社交媒体或其他大数据输入起作用的场景。
支持现有的数据架构的虚拟化和私有云软件。
支持大规模、深度和ad hoc分析软件,且允许数据科学家为企业定制需求的软件工具。
大规模扩展的存储容量,特别是近实时分析。
快速数据架构
快速数据是可以在近乎实时的情况下处理流传感器和物联网数据的架构。该种架构更聚焦于快速更新,会经常性地放开读取数据的限制,直到有数据被写入磁盘才会锁定。无论是通过现有的、典型的柱状图、数据库或从专门设计的Hadoop相关工具,采用这种架构工作的企业通常适需要对数据进行一些初始的流分析。在这一新生领域中,架构和重点的变化是很常见的:
用于快速更新和初始流数据分析的数据库软件。
大幅度提高快速数据存储的非易失性RAM和固态硬盘的使用(例如,1TB的主内存和1PB的SSD);
及时的软件约束,类似于那些旧版实时操作系统。
快速数据的目的是与大数据架构融合起来。因此,为了将这两种方式融合起来:
数据在快速响应的快速数据和减少限制的大数据存储之间是分离的。
该种融合架构允许使用大数据数据库和分析工具访问快速数据架构存储的数据。
这是一个非常简要的概述,典型的实现和有一系列的选择。主要的供应商销售各种各样的软件和硬件,以涵盖所有的大数据架构和绝大部分的快速数据架构,而开源供应商涵盖大部分相同的软件领域。因此,快速数据和大数据的实施往往是在成本与速度之间进行的平衡。聪明的买家能够通过增加有效的架构来获得竞争优势。
在快速数据领域的小型供应商Redis Labs和GridGain,大型供应商Oracle和SAP都在快速数据以及大数据两方面发挥了重要的作用。SAP可能是快速数据工具领域更加合适的供应商。在硬件领域,英特尔对快速数据有浓厚兴趣。其他传统的大数据厂商,如IBM和戴尔在收购EMC的过程中,还没有来得及发表就表现得很兴奋。在IBM和戴尔两者中间,EMC赚足了面子和里子,因此未来它在快速数据架构方面可能比IBM更有针对性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14