
本次分析的数据源来自链家网。链家网中有”二手房-成交房源”这个板块,可以查看到所有通过链家成交的二手房的信息,其中最值得称赞的是成交价格的真实性。买过房子的朋友都清楚,房子的实际成交价格和在房管局信息中心的网签价格是不一样的,处于避税的考虑,一般来说网签价格都会比真实的成交价格低,因为在房屋买卖过程中的各种税费都是以网签价格来确定的。因此,一般政府部门出具的关于房价的报告,其实是不可信的。
所以分析的第一步,就是从链家网获取想要的数据。这里我利用Python做了一个简单的爬虫,获取了从2015年7月到2016年5月,在北苑地区通过链家成交的约2500套二手房成交的数据。经过手工的数据清洗,获取到的数据大概是这个样子:
其中,链家的数据在2015年11月之后精确到了成交日期,但是为了和2015年11月之前的数据粒度统一,我都统一成了成交月份.
链家可以查询到的最晚成交是两周前的数据,因此2016年5月数据在爬取时刻只有5月3日之前,所以在之后的分析中5月数据是不可用的
本次分析不是要解决什么问题,因此分析以数据探索为主,分成两大块:
3.1 整体涨幅显著
从整体来看,北苑地区房价在近10个月内经历了一个显著的涨幅:2016年4月相对2015年7月增幅达31%;2016年4月环比3月增长12%。
对照5月18日国家统计局发布的4月份70个大中城市住宅价格变动情况,发现政府的数据似乎温和了很多……信谁大家可以自己判断……
3.2 小区越高端、越新,涨幅越大;70年住宅涨幅大于50年商住两用
北苑地区楼盘有50余个,我选取了10个小区,分别看最近一段时间的价格趋势,如下图:
从图上可以清晰的看出分成了三快
1) 第一块由华贸城、润泽公馆、世华泊郡组成,目测涨幅在40%左右。这三个小区都是2012年之后建设的,高端大气,整体价格高,但是涨幅也最高
2) 第二块由北苑家园各种园组成,目测涨幅在30%左右。这些园大部分建筑年代在1998-2005之间,只有望春园是2008年,因此价格也是望春园要明显高于其他园。这些相对平民的小区涨幅就不如高端小区
3) 第三块是最下面的旭辉奥都,目测涨幅在25%左右。旭辉奥都是2008年建成的,不过是50年产权的商住两用,不限购,但是现在也可以落户、也是民水民电,但是价格确实相对较低,而且涨幅也没有其他小区快……难道只是因为50年的原因吗?
3.3 一居及四居户型涨幅最大
从下图可以看出,一居及四居的涨幅最大,猜测原因:一是此类户型数量较少,供给相对稀缺;二是目前国内一线城市贫富差距极大:
3.4 楼层对于涨幅的影响在各小区情况不同
我们从下图中可以看到,从整体上讲,低楼层的房子涨幅更高一些,但是具体到某一个小区,情况各不相同:
4.1 高端楼盘两居单价最高,主要是因为面积较小
下图统计了从2015.7到2016.4,按照不同户型的成交均价情况:
对于华贸城、润泽公馆、世华泊郡三个相对高档的小区,两居的单价都是最贵的。而其他小区没有一致的特征,但是超过一半的两居是最便宜的。
下图统计了两居的成交面积,可以发现三个高端楼盘的两居面积较小,平均面积在90平方米以下(实际情况是这三个小区最大的两居不超过100平米)。而其他小区的两居面积都较大。
所以,猜测购房者的普遍心态可能是这样:想购买两居的人都偏向新小区的小两居。
4.2 面积越大的房子单价会越低?看来不一定!
通常来说,面积越小的房子总价低,单价高(这一点尤其在学区房上体现的很明显),面积越大的房子总价高,单价低。但是我分析了几个小区的面积与成交价格的关系,发现没有统一的规律:
4.3 朝向貌似已经不重要了
我们常理认为,南向的房子应该价格较贵、增幅较大,但是我尝试对于朝向进行分析时,发现数据一片混沌,根本得不出有价值的结论。从整体和单个小区来看,不存在南向一定贵,东西一定便宜的现象,可见朝向在现在这个时代,重要性已经大不如前了
其实在这个简单的研究中,我只研究了房子自身的属性数据。但是房价所受到的影响太多了。除了房子本身的这些属性的分析,还有交通、配套设施、停车位、学区房、是不是有核电站在周围等等……
北苑地区有5号和13号两条地铁经过,交通相对便利,社区成熟,而且我认为支撑此地区房价最重要的因素,是望京已经成为北京一个新的CBD,原本就有爱立信、诺基亚、联想、美团等高科技企业,随着阿里巴巴、Uber这两个巨头的入驻,带来越来越多的高收入精英人才,望京地区的房价已经水长船高。作为紧靠大望京的北苑地区,会成为挤出效应的收益区域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14