
贯穿整个产品生命周期的业务数据挖掘
大数据时代,数据分析及数据挖掘在企业的经营过程及业务管理中,逐步发挥出越来越显著的作用。无论是在产品的构想、原型设计阶段,还是在测试、上市商用后,用户需求与市场竞争环境都在每时每刻地不断发生变化。在这种情况下,就要秉承以用户为中心的理念,综合技术、市场两种驱动能力,以科学严谨的方法,准确有效地收集并分析用户订购及使用产品的评价、动机及行为等信息,为产品运营、业务支撑和数据管理等相关人员的工作提供系统化的指导,进一步辅助企业管理人员解决经营决策中所面临的问题。
总之,构建一个全面的,贯穿整个产品生命周期的业务数据挖掘体系框架,进行精准的用户研究及市场检验,已成为当前企业业务发展的必然趋势和重要举措。
在产品生命周期的各个阶段,有着各自不同的研究目的和研究任务,结合业务特性和运营特点,需要针对用户需求,开展满足不同业务目标的研究工作。通过采用具体的研究方法,建立起完整的用户研究体系框架。
尽管不同企业及研究机构对产品设计和商用阶段的划分和定义有所不同,但总体看来,基本上涵盖了如上所示的过程和方法。针对产品生命周期的各个阶段,综合考虑业界最常用的数据挖掘及分析方法,制定通用标准的研究流程。同时,通过长期研究积累而拓展出的关键指标,更是将用户对产品的感性认识转化为具体的参数形式。
在产品设计阶段,主要分为策略研究、概念评估、产品研发和产品测试四个时期。
策略研究时期主要围绕新产品的需求趋势来确定研究方向,通过对市场、技术和竞品等方面的深入分析,宏观把握外部竞争环境和内部用户情况两个方面。
概念评估时期通过挖掘上一时期所确定下来的目标用户群特征,生成满足用户要求的产品概念,并进行有效评估,从中筛选出潜力大、用户关注度高的概念。
产品研发时期基于筛选出的产品概念,按照以用户为中心的设计理念,完成产品原型开发。
产品测试时期利用可用性测试以及邀请用户试用等手段,在产品正式上市商用之前,最大可能地优化改进产品。
在产品商用阶段,主要分为导入、发展、成熟和衰退四个时期。
导入期,产品认知度较低,应及时监控产品的用户使用行为,掌握用户反馈评价,快速提高产品用户规模,并为产品改进提供重要依据。
发展期,产品订购开始逐渐增多,用户群和销售业绩明显上升,这个时期主要是促进用户活跃和业务的有效使用。
成熟期,随着用户量的增大,市场需求逐渐饱和,用户增速逐渐放缓,开展差异化的运营,改善用户体验是这个时期的主要任务。
衰退期,产品功能不能充分满足市场环境和用户需求的变化,产品订购开始呈现下降趋势,应采取产品优化策略,提高产品质量,并对有可能流失的用户进行挽留维系。
在产品设计阶段,第一时期策略研究从宏观角度对外部环境和内部情况加以分析,重点关注市场、技术等方面的发展与变化趋势,辅以用户细分研究,以此从中明确产品未来开发的相关策略。
借助企业内部和外部资料的收集处理,趋势分析能够帮助产品经理及时准确地了解行业发展趋势,为进一步的分析调研提供重要的参考依据。研究结果一般包括用户日常生活、社会经济发展、技术产业变革以及宏观竞争态势等方面。
策略研究时期的用户细分主要根据用户的生活方式、消费习惯以及价值观念等方面的不同,把特征相同的用户归类分组,使得不同细分用户群之间的需求差别比较明显,同一个细分用户群的需求倾向基本一致。通过用户细分,可以避免提供与用户需求不相匹配的产品,从而有效提升产品获得成功的机率。
用户细分通常根据选定的分析维度来了解并描述目标用户的典型特征,一般会通过定性和定量两个步骤来完成。定性研究采用焦点小组的方法,定量分析借助街头面访的形式。
在定性研究中,焦点小组是主要方法之一,广泛用于用户需求调研、产品功能挖掘等,其适用于用户对某产品的认知及评价使用过程中所存在问题。这种方法的优点在于常常能够从自由讨论的小组当中,获得有价值的信息。通过与访谈对象的互动交流,辅助经验丰富的主持人,总结归纳并最终形成相关理论。
焦点小组是一项组织细致的工作,需要考虑诸多对研究结果可能产生影响的因素,如样本用户选取、主持技巧把握等。
焦点小组通常会在一个专业测试室内进行,为了便于现场观察和全程记录,一般会装有单面镜及录音录像等相关设备。
在实施过程中,首先筛选预约被访用户以及确定主持人,甄别目标用户是流程中关键的一个环节,其质量的高低直接影响到筛选出的用户是否达到访谈的要求。然后设计详细的访谈提纲,布置座谈会环境,准备相关杂项,如饮料食品等。座谈结束后,整理资料并分析,形成最终结果报告。焦点小组的研究结果可以做为后续定量分析问卷设计的基础。
在甄选样本时,样本条件需要考虑用户基本属性,如限定职业、年龄和性别这三个维度,用户配额条件为男性5名,女性5名;25岁以下5名,25岁以上5名;学生5名,在职5名。实际研究工作中,则需要根据具体情况划分类别及确定样本数量。
值得注意的是,在被访用户参与人数较少的情况下,配额条件通常不考虑交叉配额,即一个被访用户需同时满足几个配额条件。另外,被访用户个人特征、经历背景尽量做到差异较小,不要出现诸如男性9名,女性1名的情况。
小组访谈中,通常涵盖用户的使用行为、价值观念、功能需求等方面的信息。主持人应按照访谈提纲次序逐一展开讨论,并在现场适时引导,防止讨论偏离主题。访谈提纲根据产品实际情况包括但不限于如上所示的几部分问题:
生活轨迹部分包括用户日常的生活及业余爱好;
消费习惯部分包括指定产品的用户订购情况、购买动机;
需求偏好部分包括用户的产品态度、认知渠道等。
情感认知部分包括用户的情感倾向;
价值观念部分包括经常谈论的话题以及对未来生活的期望;
使用行为部分包括对用户功能需求的描述和特定产品业务的使用方式等。
收集到定性问卷的结果数据后,需要从用户属性、业务偏好等维度进行综合研究,通过归纳出不同背景下用户需求共性与个性,为后期定量分析提供依据。例如,可以列出一张表格直观总结以上分析过程,将目标用户分为严谨务实、自由享乐和恋家关爱三种类型,并按照用户特征、生活轨迹、消费习惯和需求偏好四个维度进行总结。
如上所示:严谨务实的用户偏男性、收入中高,以管理人员居多;自由享乐的用户生活较为随意,业余生活丰富;恋家关爱的用户一般要求产品功能完善、便捷省心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14