
从入门到精通:互联网数据分析书籍清单
任何一个技能的学习,都有从浅到深的过程,数据分析也不例外。一个完整的数据分析知识体系类似金字塔结构:最顶层是对数据价值的认知、业务理解,中间是数据分析方法论,而最底层则是数据分析的解决方案或者具体的操作方法。我把数据分析的推荐书籍划分成三个段位,便于大家渐进式学习。
入门版适合数据分析的入门者、对数据分析没有整体概念的人,常见于应届毕业生、经验尚浅的转行者。
入门版推荐书籍
《深入浅出数据分析》:O’Relly出版的HeadFirst (深入浅出)系列书籍之一,书中有大量的图片和有趣的案例组合。本书浅显易懂形象生动,可以使入门者对分析的概念有个全面的认知。
《谁说菜鸟不会数据分析》:本书详细介绍了数据分析的基本方法和过程,并且以Excel表格为例进行了案例阐述。同时本书还介绍了数据分析在职场的意义,可以帮助职场小白快速上手。
《赤裸裸的统计学》:作者年轻时是个追求学习的学霸,后来自己从统计学中发掘了很多可以应用到生活的地方。这也是本书的主旨,结合生活讲解统计知识,生动有趣。可以避免统计学一上来就大讲贝叶斯概率和随机分析的枯燥。
同样类似的书籍还有《统计数字会撒谎》,这本书知名度要高点,通过揭露“虚假数字信息”来帮助大家理解背后的统计学原理。
进阶版具有一定的行业针对性,要求分析者具备一定的数据分析常识和业务理解;适合网站分析师,商业分析师以及数据产品经理等人群。
进阶版推荐书籍
《精通 web analytics 2.0》:Analytics将点击流网站分析工具与定性数据、测试与试验以及竞争情报工具相结合,从而推演出详尽的网站战略以及操作层方案。此书虽老,但其中很多思想和流量分析的案例仍然很有借鉴意义,现在国内只能买到二手的旧书。
与此类似的有《网站分析实战》,是国内一本讲网站分析的书,没有上面经典,但胜在新出,很多案例和理念都有及时的更新。
《深入浅出统计学》:与上面的《深入浅出数据分析》同属于Headfirst系列书籍,运用充满互动性的真实世界情节,帮助读者快速了解统计方面的理论知识。
《数据化管理》:黄成明著,讲解在企业中应用数据的例子,读完受益匪浅,里面举的很多例子都很接地气。虽说偏向于零售业管理,但大道归一,可适用于很多行业,当时依据里面的理念规划了美团外卖面向 BD 的数据产品。
《MySQL必知必会》:这本也是我当年学习 SQL 的入门书,薄册子一本,看起来很快。SQL 是个性价比很高的技能,简单而强大。任何想进一步提高自己数据分析技能的产品/运营/分析师 同学,都建议点亮这个技能点。
《互联网增长的第一本数据分析手册》:全书以增长为主题。这本手册介绍了互联网创业企业增长方法论、互联网数据分析的常见方法(趋势、转化、留存、实时、分群、细查、热图)、细分行业(如SaaS、互联网金融、电商等)的应用。
更高阶的数据分析相对来说专业性就强了,如涉及到企业内部数据治理,数据结合的业务分析,数据可视化等。当然,还有数据挖掘算法之类的更深入的东西,这块没有研究就不瞎推荐了。
高阶版推荐书籍
《决战大数据》:阿里巴巴前数据副总裁车品觉老师所著,讲解了阿里巴巴在企业内部治理数据过程中的心得,所讲“存-通-用”数据管理三板斧和“从数据化运营到运营数据”,字字珠玑,可堪借鉴。
《精益数据分析》:此书优势在于将企业分成了几个大的行业类别,并分门别类的讲解了每个行业的商业模式特点及分析技巧,对使用者的分析能力要求较高,且必须具备相应的业务知识。
《The Wall Street Journal Guide to Information Graphics》,华尔街日报负责商业分析的人做的可视化指南,精华且实用,我之前写过读书笔记《华尔街日报是这样做数据可视化的》,可供大家参考。
《数据仓库经典教程》:网上有人整理出来的资料,优点是简单明了,不像正常的数据仓库教材厚厚一本。
当然,数据分析是一门很深的学问,我也只是窥得冰山一角。要想做好数据分析必须具备多方面的技能:需要看清数据的价值并且懂业务,需要熟知数据分析的方法论,同时也要熟练掌握数据分析软件的操作。在学习上面数据分析推荐书籍的同时,不断在实践中加深自己的理解,用数据来驱动业务和客户增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10