
为什么数据分析需要会编程语言
对于数据分析,如果只是给定准备好的数据集,做简单的描述性统计、简单绘图,那么不太需要掌握任何编程语言。问题是,现实中收集到的数据是多样的、基础的,很少能直接满足模型对数据规格的要求以及模型成立的假设,那么就需要在分析前变换、合并、分类、整理数据,此时可能需要从数据库用SQL跨表查询,数据整理好后利用模型做统计推断或者机器学习等等,形成样本内或样本外的预测,可能还要用可视化的方式呈现结果。
这整个过程中,各个环节都可能涉及到大量的参数需要调节,各种细节都需要控制,还有很多主观的选择。这样的过程如果用软件窗口去实现,窗口中的选项将非常复杂,整个过程需要在多个数据及上重复执行也很麻烦。用编程语言可以精确地描述整个过程,控制大部分细节,并且可以批量的重复实现。
数据分析和探索的过程是一个不断尝试想法、验证假设的过程,这就需要临时产生、执行新的代码,脚本语言如Python和R天生就是对这样的互动操作有很好的支持。如果这种过程都用C++或Java这些需要编译(二进制或bytecode)——执行的语言来完成,那么过程将比较痛苦。
因此对于专业的数据分析,掌握数据库的应用、数据分析的编程语言是很有必要的。题目中提到的编程语言一些是通用编程语言(如C++、Java)可以广泛地用于开发各种项目,而R作为脚本语言凭借其良好的互动性和丰富的扩展包资源可以方便地解决大部分数据处理、变换、统计分析、可视化的问题,并可以重现所有的细节。数据分析者最好通用语言和脚本语言各至少掌握一种,这样在处理许多项目时就能合理地发挥不同语言的优势,提高整体的生产力。对于数据分析,如果只是给定准备好的数据集,做简单的描述性统计、简单绘图,那么不太需要掌握任何编程语言。问题是,现实中收集到的数据是多样的、基础的,很少能直接满足模型对数据规格的要求以及模型成立的假设,那么就需要在分析前变换、合并、分类、整理数据,此时可能需要从数据库用SQL跨表查询,数据整理好后利用模型做统计推断或者机器学习等等,形成样本内或样本外的预测,可能还要用可视化的方式呈现结果。
这整个过程中,各个环节都可能涉及到大量的参数需要调节,各种细节都需要控制,还有很多主观的选择。这样的过程如果用软件窗口去实现,窗口中的选项将非常复杂,整个过程需要在多个数据及上重复执行也很麻烦。用编程语言可以精确地描述整个过程,控制大部分细节,并且可以批量的重复实现。
数据分析和探索的过程是一个不断尝试想法、验证假设的过程,这就需要临时产生、执行新的代码,脚本语言如Python和R天生就是对这样的互动操作有很好的支持。如果这种过程都用C++或Java这些需要编译(二进制或bytecode)——执行的语言来完成,那么过程将比较痛苦。
因此对于专业的数据分析,掌握数据库的应用、数据分析的编程语言是很有必要的。题目中提到的编程语言一些是通用编程语言(如C++、Java)可以广泛地用于开发各种项目,而R作为脚本语言凭借其良好的互动性和丰富的扩展包资源可以方便地解决大部分数据处理、变换、统计分析、可视化的问题,并可以重现所有的细节。数据分析者最好通用语言和脚本语言各至少掌握一种,这样在处理许多项目时就能合理地发挥不同语言的优势,提高整体的生产力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10