
大数据分享将变得尤为重要
目前的中国大数据市场就好像是古代群雄逐鹿的中原,大家都说自己是大数据时代的‘诸侯’。如果对数据理解不够深刻,对自己的定位不够准确,很多公司会在市场验证的过程中被淘汰掉。
数据时代本身PK的是实力,谁对数据的理解更深,谁在行业积累沉淀更多,谁在数据行业中扮演的角色就更重要。眼下,族谱科技(北京)有限公司已在大数据领域颇有建树,获得2000万天使轮融资,pre-A轮公司估值8亿元。采访中,族谱科技的创始人、CEO张力铭向本报记者介绍了自己对大数据产业发展的看法。
大数据并不在“大”,而在于“用”
记者:有人说“大数据时代,得数据者得天下”,也有人说“数据需要分析、挖掘才能产生价值”,您认为在大数据时代要如何取胜?
张力铭:大数据并不在“大”,而在于“用”。对于很多行业而言,如何有效应用这些大规模数据、挖掘出更大的价值是成为赢得竞争的关键。大数据的应用是属于场景的应用,在不同的行业细分领域的应用过程都是一个场景,根据不同的场景应用,用不同维度的数据去对这个场景进行支撑。
大数据在不同行业有不同的应用场景,但都有一个典型的特点:无法离开以人为中心所产生的各种用户行为数据、用户业务活动和交易记录、用户社交数据,这些核心数据的相关性再加上可感知设备的智能数据采集,就构成了一个完整的大数据生态环境。比如在教育培训行业,场景应用是围绕课程和学员进行的,通过分析有特定属性的一个用户,包括用户的各种成绩、年龄以及性别等等,对一些特定类型的讲课方式以及对课程的搭配上,有针对性的开展课程。
通过族谱科技全方位、多维度数据研究发现,未来各个领域将以“准确”“高效”“先知”的数据应用场景为导引,形成新的数据预测未来的格局。大数据场景应用时代已然来临,并且进入到实用阶段。
市场是检验企业成功与否的“战场”
记者:目前中国大数据运营服务领域的现状如何?族谱科技成立仅一年多便能获得市场认可的成功之道是什么?
张力铭:世上有两种东西是很真实地体现企业和个人的价值,一个是时间,时间可以说明一切;还有一个是市场,它是用价值去衡量企业的。
市场是验证一个企业好与坏的最后“战场”,也是最不会说谎的一个行为。大数据公司要获得市场验证,前提是要在大数据领域有所建树。族谱科技的发展逻辑是“用产品说话,用数据开道”——以数据为中心,所有的产品都围绕数据进行研发,用数据衍生产品,这是族谱科技永不动摇的发展原则。从成立之初,族谱科技就不断丰富数据池,如今行业数据服务平台已包含企业、生活、通信、医疗等多行业数据信息,不仅维度广泛,而且体量巨大,彻底打破了单一的数据孤岛,形成了强大的数据生态圈。我们将坚持务实、实干,未来要做中国最大的支撑行业场景应用数据服务公司。
国内大数据的发展与国外相比差异并不大,形象上的差异就是对大数据的理解。2014年到2015年,国内关于大数据的各种概念不断涌现。目前的中国大数据市场就好像是古代群雄逐鹿的中原,大家都说自己是大数据时代的“诸侯”。如果对数据理解不够深刻,对自己的定位不够准确,很多公司会在市场验证的过程中被淘汰掉。
大数据分享将获取更大的价值
记者:您对大数据产业的发展趋势有何看法?
张力铭:随着大数据从概念渗透转向应用发展,大数据产业正处在蓬勃发展的孕育期与机遇期。大数据产业在数据和应用驱动的创新下,不断丰富商业模式,构建出多层多样的市场格局,产业生态也将得到不断完善,而大数据的应用将成为未来十年产业发展的核心趋势,大数据产业链条的应用层级也成为发展机会最大的投资领域。
数据的价值需要用IT技术去发现、去探索,数据的积累并不能够代表其价值的多少。随着产业应用层级的快速发展,如何发现数据中的价值已经成为市场及企业用户密切关注的方向,因此大数据分析领域也将获得快速的发展。
未来,大数据分享将变得尤为重要。例如在医疗行业,如果每一个医院对自己的数据进行分析,就能获得相应的价值;但是如果想获得更多更大的价值,那么就需要全国甚至全世界的医疗信息共享,这样才能够通过平台进行分析,获取更大的价值。
随着数据价值的越来越重要,大数据的安全稳定也将会逐渐被重视,无论对数据存储的物理安全还是对数据的管理方式都要求越来越高,从而对数据的多副本与容灾机制提出更高的要求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10