
产品经理怎么培养数据分析能力
随着产品经理这个岗位的越来越完善,对产品经理的能力要求也越来越高。作为产品经理不懂点数据分析,怎么说服开发做功能?怎么说服老板给资源?
数据分析的概念
数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
数据分析的方法
第一步:数据准备:(70%时间)
? 获取数据(爬虫,数据仓库)
? 验证数据
? 数据清理(缺失值、孤立点、垃圾信息、规范化、重复记录、特殊值、合并数据集)
? 使用python进行文件读取csv或者txt便于操作数据文件(I/O和文件串的处理,逗号分隔)
? 抽样(大数据时。关键是随机)
? 存储和归档
第二步:数据观察(发现规律和隐藏的关联)
? 单一变量:点图、抖动图;直方图、核密度估计;累计分布函数
? 两个变量:散点图、LOESS平滑、残差分析、对数图、倾斜
? 多个变量:假色图、马赛克图、平行左边图
第三步:数据建模
? 推算和估算(均衡可行性和成本消耗)
? 缩放参数模型(缩放维度优化问题)
? 建立概率模型(二项、高斯、幂律、几何、泊松分布与已知模型对比)
第四步:数据挖掘
? 选择合适的机器学习算法(蒙特卡洛模拟,相似度计算,主成分分析)
? 大数据考虑用Map/Reduce
? 得出结论,绘制最后图表
循环到第二步到第四步,进行数据分析,根据图表得出结论完成文章。
业务分析版
“无尺度网络模型”的作者艾伯特-拉斯洛?巴拉巴西认为——人类93%的行为是可以预测的。数据作为人类活动的痕迹,就像金矿等待发掘。但是首先你得明确自己的业务需求,数据才可能为你所用。
1. 数据为王,业务是核心
? 了解整个产业链的结构
? 制定好业务的发展规划
? 衡量的核心指标有哪些
有了数据必须和业务结合才有效果。首先你需要摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解。然后根据业务当前的需要,指定发展计划,从而归类出需要整理的数据。最后一步详细的列出数据核心指标(KPI),并且对几个核心指标进行更细致的拆解,当然具体结合你的业务属性来处理,找出那些对指标影响幅度较大的影响因子。前期资料的收集以及业务现况的全面掌握非常关键。
2. 思考指标现状,发现多维规律
? 熟悉产品框架,全面定义每个指标的运营现状
? 对比同行业指标,挖掘隐藏的提升空间
? 拆解关键指标,合理设置运营方法来观察效果
? 争对核心用户,单独进行产品用研与需求挖掘
发现规律不一定需要很高深的编程方法,或者复杂的统计公式,更重要的是培养一种感觉和意识。不能用你的感觉去揣测用户的感觉,因为每个人的教育背景、生活环境都不一样。很多数据元素之间的关系没有明显的显示,需要使用直觉与观察(数据可视化技术来呈现)。
3. 规律验证,经验总结
发现了规律之后不能立刻上线,需要在测试机上对模型进行验证。
P.S.数学建模能力对培养数感有一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10