
大数据化解不了P2P借贷风险
P2P借贷利率,动辄数倍于基准利率,今年一季度达到21.98%,而银行贷款利率五年以上的也不过6.55%。高利贷盛行,P2P借贷不过是种高利贷的新的借贷形式,只是应用了互联网,但高利贷依旧是高利贷,它的出现与社会的资本短缺有关。
P2P借贷风险如何?这不在于借贷平台怎么样,而是在于借贷者怎么样,高额的利率是否能够偿付得起。整体上借贷者是否能够保证偿付安全,还是在于它们自身的利润水平。这些借贷者的利润水平,又与整个经济大环境密切相关。经济大环境究竟如何,向好还是向坏,这才是衡量风险的重点,否则危机来了,雷曼这样的公司都不保险,中小银行也不会保险。
这些借贷的中小企业,会保险吗?据我所知,还不上钱跳楼自杀或者“失踪”的企业主,各地都有。借钱图高利的借款人,一夜梦碎。
什么样P2P的借贷平台会保险呢?
那些借贷濒临破产的公司,利滚利,拆东墙补西墙,如何会保险。倘若只说技术方面的风险,那么借贷平台主要就是征信体系的问题,是否保证借贷者足够的信用,大数据或许能帮上点忙,而京东或阿里巴巴这样的电商巨头具有天然的优势。
但话又说回来,大数据就可靠么?就能保证了信用吗?当危机到来“市场失灵”的时候,以往良好信用的客户都会纷纷违约,无力还贷。大数据本身对抗不了经济周期性的危机。在危机发生之前积累的大数据,对于危机本身没有任何预见作用。
美国有个著名的长期资本管理公司(LTCM),其创始人是债务套利之父梅里韦瑟,他邀请了诺贝尔经济学奖获得者默顿和舒尔茨加盟团队,用一套精密的期权定价公式来衡量未来的收益率,进行资本套利,而且非常精准地预见了短期市场的状况,大受追捧。然而其数据来源并不能有效涵盖经济危机时期,因此到了危机袭来的时候,昔日精密的算法持续地扩大了该公司的亏损,终于陷入破产境地。
这个案例告诉我们,不要迷信征信系统,也不要迷信大数据——LTCM是典型的大数据应用金融建构模型的案例,它只能作为一个参考,而金融本身本来就带有着相当大的不确定性,包括个人的信用,都是不确定的。风险总是集中袭来的。社会系统本身出问题的时候,大数据和完备信用基础上的互联网金融,绝不会幸免。知大势是非常重要的,一般来说,成功的金融家,本身就是战略家,社会的思想领袖。
P2P借贷安全不安全,只是个概率问题,当然体量越大,越可能“大而不倒”。再完善的征信系统,实际都不能准确反映借贷者的用资方向。借贷者可以包装得资本需求安全些,而且保持良好的信用记录。只是它实际真正地将钱用到了哪里,而如何弄到了回馈的现金流,这是借贷平台能管的么。新疆喀什的地下金融市场里,充斥了毒品的交易,而各方都拿着内地居民高息借出的钱款,组建自己的卫队,维护自己借款人的正义,这些内地居民会知道他们的理财产品怎么弄到了这里来。
再如传销网络,在击鼓传花没传到最后一个傻瓜之前,它的整个系统是不是都“信用良好”。包括那些搞“庞氏骗局”的非法融资者,利润没那么高,却许以高利,最终难以为继,卷款跑路的也不在少数。因此,当你看到那些高额利率的P2P广告,或者年化收益率动辄就数倍于基准利率的诱人产品,还是要长点脑子——究竟什么才可以暴利?背后会有什么?那怕它信用良好。这要求投资者不要太利欲熏心。小米官网之外的号称699的红米基本是假货,那么把你的资本定价那么高叫你出借的,这算是什么东东。
网络P2P借贷,对银行的业务是具有颠覆性的作用的。但这种P2P借贷体系依旧需要规范,它固然是直接融资的大方向,但还是要防止过热,加强监管。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14