
数据分析在供应链管理中的应用
供应链管理是一种策略概念,它的顺利实现是基于高速发展的信息系统电脑管理技术,将处于供应链上游的原料材料采购、中游的制作加工、货物运输等环节以及处于供应链下游的经销商的销售环节集成为一个无缝接续的流程。大数据时代的来临以及数据分析技术的发展为供应链管理提供了新的机会和挑战。
数据分析在供应链管理中的应用分为以下4点
1:组织、机制和人才改善
若要实现数据分析技术在公司的供应链管理中发挥作用,必须首先落实组织架构、机制改善和人才培养3 个方面。
组织架构制定上可以探索成立大数据中心,原先的信息部门改为大数据分析部门,从而实现大数据分析嵌入供应链管理的组织保障;机制上,将大数据的搜索、分析和价值应用贯彻到整个供应链管理的业务工作层面,形成全方位、立体化的大数据搜集、分析和应用模式;在人才发展方面,要自主培养和人才引进相结合。做到以上3 个方面,数据分析技术发挥的基础已经搭建完成。
2:明确大数据搜集途径
直接面向客户的供应链前端是数据搜集最有利的途径。为此,要搭建统一的前端信息系统和公司信息系统,形成前端交易数据和市场需求信息到公司大数据分析部门的快速通道。大数据分析部门做出统一的数据分析结果,包括交易信息、市场需求等,形成准确定位、快速响应的物流供应链条,从而降低成本。
3:实现无缝对接的供应链条
无缝对接的供应链条中要保证大数据一方面连接着需求者,另一方面连接着供给者。数据分析过程中要在3个层面进行数据挖掘:一是挖掘会员数据信息,二是管理平台数据,三是构建良性循环的生态圈,借助数据平台的优势和大数据分析技术消除信息孤岛的状态,打造智能供应链生态圈,使得供应链发展成为更加智能的、过程简化的、具体可视化的。为此,供应链管理者要做的就是建立渠道、数据收集、数据挖掘,最终实现数据价值发现,实现精准地上下游无缝对接。
4:数据分析对品牌发展的作用
通过与大数据的深度结合提升供应链实力。核心是对用户需求信息的收集及分析,战略指导原则是高度重视用户体验。通过设计和发起丰富的互动环节,实现用户粘性的提高,进一步实现用户信息和意见的搜集。接下来利用精准信息甄别、处理和价值发现系统实现信息的全方位数据价值挖掘,形成以数据分析为背景的供应链管理策略,形成双向整合互推式的信息闭环,从而提升供应链的整体影响力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10