
以一个操作流程为例,探讨产品的数据分析逻辑
数据分析能力也是产品经理的核心能力之一,但是很多人认为数据分析是运营该具备的能力,其实不是的,运营和产品不是同一个维度的数据分析,况且运营也没产品熟悉整个设计流程,经验不足的运营想要可观的去提优化产品的需求几乎是不可能的,今天举个小栗子来谈产品经理的数据分析能力。
以某款产品为例,我们来看它的首页逻辑:
首页相当于摘要将主推的产品展示出来,以理财产品为例子,会将收益很高的产品放在首页展示。当我在首页点击某个理财产品进入产品详情时,这时候首页导流转化已经完成了,但我当我查看商品详情以后,我发现我并不感兴趣,于是我退出。这个时候,请问该退到哪里去?
按照常理说,是要退回首页的,但是此刻退回到首页的逻辑是否合适,是我思考的问题。
假设我今天想去逛街,但我也不知道买什么,在一家商店中有卖上衣、裤子、内搭、裙子等多款产品,我看到了一款上衣很别致,试了一下不是很满意,脱掉,请问接下来店员会如何服务我?是问我您需要裤子,上衣,还是裙子?还是会问,那您看这一款上衣怎样,比您身上这件会更显身材些? 我想大多数情况都是后者,店员觉得我有买上衣的倾向,既然不喜欢,可以推荐其他款上衣,如果我表示不想看了,他才会继续推荐店里还有裤子和裙子等,可以随意浏览一些。那同样的,如果我对这款理财产品不感兴趣,可能会对其他理财产品感兴趣呀,所以如果我让用户退回理财列表,供用户来查看其他理财产品,是不是更合适些。这时候问题来了,有人提出异议,你从首页进入产品详情,退回到产品列表,而不是首页,用户会迷茫的。OK,此时,就需要你用数据分析的能力来去证明这样的设想是否可行?那么怎么去设计数据维度来支撑你的设计呢?
首先,纠结的点在于到详情页面以后退回的路径是首页还是理财列表,那我要证明的点必然在这个过程中的转化,那有以下三种情况:
以上场景用思维导图标识如下:
这三个数据指标的统计可以清晰的展示出用户的行为习惯。它分别展示了用户讨厌进入产品列表,用户对首页更感兴趣,用户更愿意查看其他理财产品,这是基础的数据源,按照比例我们基本就可以做出判断,但是这个数据只能说明需求是否可行性,比如说用户退出率很低,那就证明这个路径对用户影响并不大,就可以尝试。但是这还不够,这并不能证明这种设计是否能带来收益,数据分析还要继续细挖。
分析导图如下:
1、用户列表页直接退出应用。 一种可能是用户迷失,气愤离开;一种可能是有事偶然退出;一种是虽然没进入详情页,但是加载了当前的理财产品,一般首页都会先加载出10条数据,用户上推会继续加载10条,这个动作是可以统计的,这个场景是用户只是没进详情,但还是大致看了一眼你有多少种产品,也会潜在增加产品的曝光率。当然这个是场景推测,其实这部分数据就都算气愤退出也没什么。
2、用户从列表页回到首页。然后退出应用,可以认为是用户自然的行为;用户继续浏览其他频道,那可以认为用户的行为没受到影响。
3、用户从列表页进入了其他产品详情页。也就是说,用户浏览了其他一款或者多款产品,这个说明,这个引导是用户认可的,他比较感兴趣去查看了其他的理财产品。更好的情况是,用户查看过后,在某个产品上下单,实现了最终的收益转化,这个数据的统计就显得格外有意义了。
所以,浏览列表+进入其他频道+回首页退出此类行为其实并没有对用户造成致命的强迫退出,可以只做参考,然后浏览其他产品+下单的转化率,这部分数据即可评估产品这样设计的效果了,目测是没有问题的。
作为一个野路子的产品,很多时候都是靠直觉,在数据分析这块研究刚刚起步,非常浅薄,欢迎有经验的同行们来指点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10