
关于用户流失,数据分析可以挽回一线生机
关于流失,就不必过多的说明了,古往今来,从菜市场到互联网,都是各行从业者所不想看到的。然而人有生老病死,新陈代谢式的流失是不可避免的。
有些流失是无法避免的,但也有可以挽留的。
可以进一步分为新用户水土不服型和老用户兴趣转移型,这部分流失用户是无法挽留的,缘尽于此,花再多的钱也没什么用,毕竟强扭的瓜儿它不甜。所以我们应该尽量将这部分用户剥离出来,避免不必要的投入。
可能是应用体验、服务体验、交易体验、商品体验等等,总之就是在使用产品\服务的过程中,感到了一丝不爽,正所谓一言不合就流失。对于我们而言,当然是要找到哪个环节让用户感受到了不爽,并及时维护,尽最大程度减少体验流失。
也就是用户已经转粉了。可能是竞争对手的体验更好,可能竞争对手推出了什么优惠的政策。我们也需要抓住行业的动态,针对竞争对手的抢粉行为做出相应的行动,来避免竞争所带来的流失。
各公司对流失的定义不同,可能是7天内没有登陆行为,一般一款游戏7天没有再次登陆的基本就可以算是流失了;也可以是几个月之内没有交易行为,电商或者o2o公司的流失周期会比较长,它的流失也没有像游戏或者内容应用那样好判断。那对于一个公司来说,怎样一个沉默周期就算做是流失了呢?可以通过回流率来判断,如果第8天的回流率依然很高,那么7天沉默就算作流失肯定就不合适了。(回流率=时间周期内流失的再回访的人数/时间周期内流失的人数)
关于流失的常规数据监控,一般都是和存留一起的,本身两者也是分不开的(出门左转,前面已经写了存留相关的内容)。单独针对流失的,最多可以利用finereport看到如下图样式的监控:
上图对整体的流失情况进行一个总体的监控,关注点在于流失率是否稳定、新用户流失与老用户流失占比。一般来说,新用户流失率比较高,而老用户流失的严重性更大一些,当发现老用户流失率较高的情况,应该针对流失用户进行更近一步的分析,要对流失用户进行聚类,另外关联流失用户的行为日志,将分析结果最终落地到产品。私以为,只有从产品的角度降低老用户的流失率才是靠谱的,其他手段都是治标不治本。
关于新用户的流失,今天跟朋友聊到,一款产品或者游戏的运营,避免不了新用户的流失率是越来越高的。一款新的产品刚上线时,用户质量一般比较高,而当一款产品运营一段时间后,所谓的新用户有一定程度上是运营人员强行拉过来的,质量会有所下降。so,还是重视老用户的存留,and,关于渠道的价值评估也是一定要加上存留率了如下图(前面写的仅仅有转化率、roi、流量的相关的渠道价值评估,关于渠道的价值,应该综合更多维度分析)。
另外可以针对流失的用户类型进行近一步的分类如下,来为运营人员分析用户流失分析提供初步假设:
当然,上面所描述的都是最基本的监控性报表,对于流失而言,更多的是深度的分析,需要对潜在流失用户进行预测、对流失原因进行分析,各参数与用户流失的相关性分析等。这些就需要考虑具体的业务场景进行建模分析了。
有朋友提醒,渠道是无处不在的,贯穿于整个运营体系之中,存留的曲线图也需要按照渠道来进行细分对比。例如:当发现次日存留率较低,点击图标进入下一层,罗列出所有渠道的次日存留率,来达到对存留更全面的认识,也是对渠道价值的监控。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10