
电商运营基本知识与常见的数据分析要素
有许多朋友会问,电商运营难不难?而我一般只回答,难也不难!为什么会这样回答呢?其实想做好一件事情,努力+兴趣很重要。做不好运营的,要不是不够努力,要不就是压根对这行没什么兴趣。在互联网发达的今天,许多资料都以免费的形式散布在互联网的各个角落,如果有心,你总能够找到想要的,所以难与不难全凭自己罢了。今天为了更好的帮助喜欢电商运营朋友,特意写了这篇电商运营基本知识的文章,希望可以帮到各位刚入行的伙伴早点认识电商运营这个职位吧。
在电子商务中,常见的模式有:
1、B2B,含义:B代表指企业,即企业与企业之间的交易行为模式
2、B2C,含义:C代表用户,即企业与个人之间发生的交易行为模式
3、C2C,含义:个人与个人之间的交易行为模式
其它模式:B2M、M2C、B2A(即B2G)、C2A(即C2G)
在电商运营中,基于用户层面的数据分析:
不管是做网站运营,还是电商运营,数据分析是必不可少的工作之一,基于真实数据下的数据统计,通过全局的数据分析,找出问题,然后在运营当中解决问题。比如网站运营会关注收录数、PV、UV、跳出率等数据,万商堂认为在电商运营中,基于用户层面的分析,其实与网站运营关注的数据差不多。图中各项数据以周为单位进行每日数据对比,另外还要重点观察购物车、下单、转化这一过程的环比数据情况。
在电商运营中,基于订单层面的数据分析:
各节点转化率分析一般是首页-列表页转化率,列表页-祥情页转化率,祥情页-支付页转化率,支付页-支付成功转化率。在进行销售额的数据统计与分析时,个人建议减去平台补贴情况的相关数据。电商运营的具体过程中我们还要进行净利润的数据统计啊,忙活了这么久,总得知道自己赚了多少钱吧。还有资金回笼率、产销率、毛利率、费用率(不包含商品的各类成本)等等。
在电商运营中,基于数据分析涉及的工具
在我们刚刚接触到电商运营时,其实上级往往会先让你进行一统计数据的活,比如这个市场大不大,竞争对手有哪些,竞争对手的销售好不好等等。基于宏观上的数据,互联网上就有现成的,我们要的只是统计好就好了。一些常见的数据统计工具有:
1、Excel
2、siteflow电子商务数据分析工具
3、BDP数据分析工具,善于展现图表分析
4、百度统计,站长统计等网站数据统计工具
其实数据工具不再多,能用就好了,我还见过完全基于Excel做数据分析的,不过关于定单量、销售额等敏感数据,有许多的电商企业并不使用第三方数据统计工具,而是自己开发,虽然增加了成本,但也避免的敏感资料外泄的可能性。好了,今天这篇文章就写到这里,因为只是以文章的形式来写,所以我一篇文章也不可能把所有东西全写出来,更多的还是想做个引路人的角色吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10