
首先要善用数据分析 才能对症下药去想涨粉变现的事
昨天聊到公众号最赚钱的地方就是广告,和卖产品比起来,用公众号发广告赚钱确实是省时省力省心。但是,做到这样的前提是,我们公众号粉丝要足够多,粘合度要足够高,这样才能够好好利用粉丝带来的经济效益。这就要求我们运营公众号时要时刻关注后台文章数据动态,了解每一次发文后涨粉了多少,掉粉了多少,根据这些相关数据分析问题,及时调整公众号的运营策略,维护粉丝粘合度。那么,如何做文章数据分析呢?
说到数据分析,大家想到的大多都是用户分析和运营分析吧。用户分析可以让我们知道粉丝的性别、所处的地域、所用的手机型号等,有利于我们精确分析出粉丝所属群体、消费能力,从而对症下药。运营分析则可以帮助我们分析公众号的经济效益。而文章数据分析却比较少人提及,但这一环节在增加文章影响力、增加粉丝粘合度中却能发挥极大的作用。
在我看来,文章数据分析主要是指每天推送的每篇文章的阅读量、转发量和点赞。通过这三个数据我们可以看出一篇文章对粉丝的吸引程度。其主要有两个方面,一是不同类文章对比,二是同类文章对比。
一、不同类型文章对比
我们用得最多的就是不同类型文章对比了。
如果一篇文章阅读量、转发量和点赞数都很高,那么我们可以主要从这篇文章的标题、内容出发,了解粉丝对什么类型的标题更感兴趣,对什么样的内容更具有共鸣。当然这些数据并不是一下子就能够看出来的,我们需要和往期文章进行对比,跨度可以按周或者按月来选择。
比如八月的一篇文章阅读量特别高,那么我们就将其前一周或者前一个月的文章都列出来,将他的数据和往期的这些文章进行对比,思考为何这篇文章的阅读量就偏偏领先于其他文章。可以从标题、行文风格、图片风格、排版等找出其中阅读量较高文章的共同点,找出好文章的共同规律。
转化率
为了更加直观的看出文章的效果,我们也可以加一个转发阅读比,暂时就称它为转化率吧。转发率=转发量/阅读量×100%。通过转化率,我们可以看出文章的质量,在我看来,一篇文章的转化率为4%才算合格,也就是一篇1000阅读量的文章转发量要达到40以上的转发量才算合格。
这种转发率的计算,我们可以通过Excel表格,制作函数公式制作出来,按周或者按月通过表格一一列出来,这样就一目了然。
二、同类文章对比
除了以上这种方法,我们也可以将文章按以下四种情况进行分类,同类之间进行对比。
第一类:阅读高,转发高。这种文章是重点研究对象,找出他们所具有的共同点。
第二类:阅读低,转发低。这种文章是我们重点反思的对象,除了找出这类文章的共同点外,我们也一定要将其和第一类文章进行对比,找出其自身缺点,看看这篇文章坏在哪儿了。
第三类:阅读高,转发低。这种文章大部分都是标题能够引起人们的阅读兴趣,但是内容却不怎么样,或者并没有引起读者的共鸣。吸引人的标题虽然能够增加阅读量,但不一定带来高转发率。我们需要避免出现这种文章。
第四类:阅读低,转发高。这种文章主要是一些专业性的干货,虽然对很多人有用,但是内容非常干,很多人只看重他是干货但是阅读起来却很难读,因此转发高却没多少人看。还有一种就是搞活动做优惠的文章,转发量大但没多少人阅读。
依据这四种情况,我们通过Excel表格将这些文章分成这四类,同样,按每周或者按每月进行汇总。接着就是和以上的步骤一样了,总结。
好文章的共同特点
最后,跟大家分享一下转发高、阅读量高的好文章的共同特点。
1、一个好标题
这个就不用多说了,一个好的标题可以起到画龙点睛的作用。在现在“眼球第一”大众传播社会中,吸引眼球是达成传播的第一步,因此一个醒目的标题,现在闲的尤其重要。当然,我们不能去做那种标题党,这虽然能够吸引阅读,但是按长久来说,这样做很容易掉粉的。
2、一段好内容
虽然好的标题能够吸引粉丝阅读,但是让读者点进去这只是起点。文章里面的内容如果不能吸引读者,那在高的阅读量都没有意义。对于一个读者而言,好的标题引起了他的阅读兴趣,如果他点进去发现内容并不能符合他的期望值,并不能让他读起来获得满足和享受,那么公众号很难对他产生粘性。
3、一个长篇幅
虽然说短篇幅的文章简单易读,符合现在的快节奏生活。但是事实上,和短篇幅文章相比,更易于转发的是长篇幅的具有深度的文章。
4、一个低的认知成本
文章易于阅读易于理解,越容易被点击和转发。像那种干货类的文章转发量一般都很高,但我们要注意的是,干货文章不能写的太专业,不然转发上去了,可阅读量却没上去。
我们通过以上两个分析方法总结出规律,同时结合这好文章的四个特点来撰写文章,肯定会事半功倍的。
说起公众号运营,对于公众号初级运营者来说肯定都感触颇深,尤其是在数据分析这一块,能够学到很多东西。要统计什么数据、如何去统计、如何通过这些数据看出公众号运营存在的问题......这一轮下来对初学者来说几乎是蜕了一层皮,就感觉像是玄奘西天取经一样,遇到种种困难,但是取完真经后,便是快乐欣慰的时光了。因此,对于数据分析,我们不用害怕,虽然我们一直是在路上学习,但是通过对这些文章的数据进行分析,我们总能找到规律的,按着这些规律来写文章,就不用愁吸引不了粉丝、增加不了粘合度了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13