京公网安备 11010802034615号
经营许可证编号:京B2-20210330
发展“大数据”聚焦三大问题
当前,对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态正快速发展。而为了进一步促进“大数据”的发展,日前,国务院印发了《大数据发展行动纲要》(以下简称《纲要》),聚焦三大问题,成为“大数据”未来发展的指南。
焦点一:加快政府数据开放共享
《纲要》指出,要加快政府数据开放共享,推动资源整合,提升治理能力。即要大力推动政府部门数据共享,稳步推动公共数据资源开放,统筹规划大数据基础设施建设,支持宏观调控科学化,推动政府治理精准化,推进商事服务便捷化,促进安全保障高效化,加快民生服务普惠化。
从整体上看,政府数据的开放程度相较以前有了明显好转。在数据公开方式上,已经由纸质文件转为线上线下结合,除了相应的官方网站外,还有微信、微博等线上平台与群众进行互动答疑。在数据公开内容上,由此前“不解渴”的数据逐渐转向群众所需求的数据,达到真正的急人之所急、需人之所需。
然而,“数据平台”、“信息共享”、“互联互通”等词汇虽频频被政策文件提及,但实际上,仅仅是政府各部门间的数据共享就未能得到全面普及,从群众的反馈上可见一斑。
购房时客户需要填报十几张表格,其中表格的重复率高达30%;办理证件时需要来往各个部门开具相应证明,群众为此跑断腿;不同区域、不同部门的政府数据实现分割、垄断式管理,产生一个个“数据孤岛”,从而影响其社会服务效率。
由此可见,要实现政府各部门间的数据共享仍有很长一段路要走。虽然不同部门规则不一、层次不一等多方面原因造成了“数据孤岛”,但破除“数据孤岛”也是发展“大数据”的首要任务。因此,加快政府数据开放共享无疑是亮点之一,也是社会群众所迫切需求的。
对于如何加快政府数据开放共享,《纲要》也提出若干措施,如加强顶层设计和统筹规划,明确各部门数据共享的范围边界和使用方式;厘清各部门数据管理及共享的义务和权利,依托政府数据统一共享交换平台;大力推进国家人口基础信息库等国家基础数据资源,以及金税、金关、金财等信息系统跨部门、跨区域共享;加快各地区、各部门、各有关企事业单位及社会组织信用信息系统的互联互通和信息共享,丰富面向公众的信用信息服务,提高政府服务和监管水平等。
焦点二:推动产业创新发展
《纲要》指出,要推动产业创新发展,培育新兴业态,助力经济转型。即要发展工业大数据、新兴产业大数据、农业农村大数据、万众创新大数据,推进基础研究和核心技术攻关,形成大数据产品体系,完善大数据产业链。
当前,新兴产业对推动经济发展、助力经济转型有着重要作用。然而,也正因为它是新兴产业,所以拥有的资源比传统产业少,发展环境也不如传统产业。“大数据”的发展则能有效弥补新兴产业缺少资源的短处,故而发展“大数据”能变相推动产业创新发展,亦能改变新兴产业的盈利模式。
以发展万众创新大数据为例,对于初次创业的创客们,实施大数据创新行动计划,鼓励企业和公众发掘利用开放数据资源,无疑能激发创新创业活力,减少许多不必要的创业弯路。
同时,利用大数据、云计算等技术,对各领域知识进行大规模整合,搭建层次清晰、覆盖全面、内容准确的知识资源库群,亦能为创客们提供精准、高水平的知识服务,避免跨界发展的创客遇到知识盲区等。
此外,许多互联网模式下的新兴产业也可利用相应的网络平台积累自己的大数据,以自己的大数据衍生出其他服务,形成不同的盈利模式,百花齐放。
焦点三:强化安全保障
《纲要》指出,要强化安全保障,提高管理水平,促进健康发展。即要建立大数据安全评估体系,健全大数据安全保障体系,明确数据采集、传输、存储、使用、开放等各环节保障网络安全的范围边界、责任主体和具体要求,强化安全支撑。
在信息化的时代,数据应用无处不在,数据的安全问题也随之层出不穷。仅以个人数据为例,在消费途径多样化的大环境下,个人数据被留存在各种渠道上。从管理资金的金融系统到出行旅游的交通系统,再到快捷消费的电子商务平台,个人数据无处不在,而要保护这些数据不被非法利用,则是难上加难。
然而,要发展“大数据”,就必须对数据的安全有所保障,营造一个安全的数据流通环境。一方面要在数据的获取、存储、使用等方面进行有效保障,如加大“大数据”安全保障体系建设、建立网络安全信息共享机制等;另一方面也要完善相关法律,利用法律的牙齿来进行刑事责任约束,对非法利用数据等违法行为加大惩处力度。
对此,《纲要》也提出举措和目标,即在涉及国家安全稳定的领域采用安全可靠的产品和服务,到2020年,实现关键部门的关键设备安全可靠。完善网络安全保密防护体系。建设国家网络安全信息汇聚共享和关联分析平台,促进网络安全相关数据融合和资源合理分配,提升重大网络安全事件应急处理能力等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31