
数据分析的未来:合作,深度学习,解读背后的故事
诸如“谁是典型的亚马逊客户?”这样的简单问题没有意义。他说,如今不再可能从少量数据点中得出重要结论。现在像数据分析师这样的职位需要具备合作或团队建设技能,拥有更丰富技能的团队“能够了解市场,知道它是如何运作的80%的受访者表示,他们计划在今后五年内投资预测分析,但超过40%的受访者说,他们对投资数据科学项目的最大担忧是好处或效果不明。深度学习的下一个阶段是“元”阶段,即“算法将会自动生成”。
原文翻译:
佛罗里达理工大学数学和分析学助理教授阿桑纳西奥斯·杰提米斯(Athanasios Gentimis)博士认为,数据分析的未来在于团队合作,主题专家和数据科学家组成团队通力合作,每位团队成员分别发挥自己的长处。他还认为,数据分析的未来,在于依靠深度学习来发现有关数据的重要问题,并找出答案。
杰提米斯博士的专业领域是代数拓扑,对几何群论特别感兴趣。最近接受Dataversity网站采访时,他谈到了数据分析的演变和未来。
当今的数据是多维的
“上世纪80年代,分析是基于很小的数据集,只包含一次调查的数据量。”杰提米斯博士说,“调查人员可能只会询问1,000个人,然后便试图据此推断出有关整个社会的信息。”
这个过程是从小样本着手,并且试图推断出整体人口的情况。该过程更需要直觉而不是计算能力,使用的工具也是针对上述的特定目的创建的。但现在,考虑到数据的庞大体量和多样性,诸如“谁是典型的亚马逊客户?”这样的简单问题没有意义。他说,如今不再可能从少量数据点中得出重要结论。
既然数据的广度变得更加细致复杂,那么演示方法也需要变得更加细致复杂,因此使用简单的图表或者幻灯片演示,在他看来:
“这种方法不再可行。那些数据集变得更加复杂,因为你现在开始做的东西将不止拥有一个维度,你现在必须去构想那种拥有四个、五个或者六个属性的产品,所以旧有的演示方法不再能得到良好的演示效果。”
简单的演示方法不再能够充分展现数据背后的故事,而企业高管需要知道那些故事才能有效地使用数据,达到预测和规范的目的。2015年,凯勒·奥尼尔(Kelle O’Neal)和查尔斯·罗伊(Charles Roe)在Dataversity网站上发表了题为《对比商业智能与数据科学》的调查报告。他们发现,近半数的受访者把“加强对客户的了解”作为投资数据科学的主要原因:
“决策的改善和对业绩的更深入理解是评估预测分析/数据科学项目有效性的最重要指标。经营效率的提升、影响分析的改善、成本的降低和更准确的预测是企业高管最想通过数据分析得到的东西。”
从数据中寻找意义:解读数据背后的故事
数据分析师如何才能以一种有意义的方式与终端用户分享复杂数据?“必须和主题专家合作。”杰提米斯博士说。而这可能需要一些额外的沟通和社交技能。他认为,现在像数据分析师这样的职位需要具备合作或团队建设技能,拥有更丰富技能的团队“能够了解市场,知道它是如何运作的”。
杰提米斯博士承认,作为一名数学家,“我能告诉你数据说了些什么,但我无法解释其含义,所以我需要和主题专家合作,解读数据背后的故事。”他说,一个人当然也完全有可能同时掌握终端用户的视角和分析师的专业技能,但“最好的做法还是让分析师和主题专家携手合作,组建团队”。
知道数据背后的故事可以让企业了解以前发生了什么(描述分析),对未来做出预测(预测分析),并制定计划来影响未来的结果(规范分析)。在Dataversity网站的前述调查中,80%的受访者表示,他们计划在今后五年内投资预测分析,但超过40%的受访者说,他们对投资数据科学项目的最大担忧是好处或效果不明。他们不必知道如何解读数据背后的故事和(或)故事的真正含义。这是数据分析师和数据科学家的合作领域。
术语可能会造成理解障碍
关于数据分析的价值,有些困惑可能源于对术语缺乏了解。目前对常用术语的解释尚存在差异,用奥尼尔和罗伊的话来说就是“定义各不相同”。
他们给出了一些有用的定义,列举如下:
·数据科学指的是对数据进行组织以用于分析的程序,具体包括测量、收集、整理、工具运用和分析,而商业智能指的是在企业决策和报告中对所有这些数据的利用。
·商业智能会把存储于数据仓库和数据集市内的原始数据转化成可用的知识/信息资产。
·描述分析是为“发生了什么?”、“我们现在面临什么情况?”等问题提供回答,包含一系列标准的终端用户报告,比如特别报告、基本查询、数据仪表板和图表。
·数据科学则是让企业有能力将数据资产转化成场景。描述分析固然也能让人们讲述特定类型的数据场景,但会带有明确的时间视角,每个场景故事回答一个单独的数据问题。而数据科学会让场景贯穿到整条时间线中,进入不同的数据领域,从过去延伸到未来,涉及的问题和答案要多得多。
·预测分析主要是提出“可能发生什么?”或者“我们将面临什么情况?”的问题,从而利用预测、决策分析、文本分析、事务分析、趋势线、情绪分析、优化、地理位置数据、机器学习、自然语言处理技术和很多其他方法来提供“可能的”结果。
·规范分析的目的是回答“应该发生什么?”的问题,以便达到期望的未来结果。关于规范分析是否属于预测分析,也存在着若干争论,但不管怎样,二者的目的都是相同的。
具有经验学习能力的数据分析即将出现
弄清楚商业智能价值的另一个关键,可能在于从数据分析的经验中获得洞察力,分析软件公司River Logic如此表示:
“随着企业更善于利用商业分析,他们得到的价值将大幅增加,尤其是当他们的视线从回顾过去转向展望未来时。养成这种思维模式后,他们便能够利用规范分析,把数据转化成可执行的最佳方案。”
杰提米斯博士认为,下一步的合理行动是深度学习。他这样解释深度学习:“你可以训练一台机器或者一部机器人去做你希望它做的任何事,无需外力帮助便可开始,之后便会进入某种监督学习模式。”他将IBM誉为深度学习领域的先驱,因为是该公司设计了相关算法,并将庞大的数据集输入电脑,然后教会机器提出正确的问题。
他认为深度学习的下一个阶段是“元”阶段,即“算法将会自动生成”。他将Facebook援引为这个阶段的例子,因为Facebook找到并促进了人与人之间的联系,所使用的算法“超出了人们的预料,并且由电脑自己创造了新的规则”。
数据分析是实现成功的必要工具
让数据分析师和主题专家合作,逐渐从数据分析的经验中获得洞察力也好,利用机器来解读数据背后的故事也罢,总之企业无法承受没有商业智能/数据分析项目的代价。奥尼尔和罗伊写道:
“建立全面的商业智能/数据分析项目,把传统的描述分析与预测分析、规范分析等下一代分析技术结合起来,是企业成功的必要条件。有详细的记录显示,可靠的商业智能和数据分析项目能够带来确实的竞争优势。事实已经证明,这样的项目能够带来各种各样的好处,包括降低企业成本,提高客户留存率,改善决策,和加强机会预测能力。不管是对成长型企业还是成熟企业来说,这样的项目都是不可或缺的。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27