
调查问卷的SPSS的基本处理方法
SPSS是常用的数理统计软件之一,也可以用于调查问卷的统计分析,一下就调查问卷的一些基本分析处理方法做一些简单的描写。另外,虽然SPSS也有图表功能,但个人认为不是很好用,建议还是将统计分析的数据导到EXCEL中再作图表。
频度就是某个选项出现的次数,一般用来描述单选项。
问卷设计实例:
企业经营规模为(年销售额:人民币):
□>30亿 □5~30亿 □0.5~5亿 □<0.5亿
数据记录要点:
单列记录,第几项选中记录数值几,例如选中“0.5~5亿”则记录3。
SPSS基本操作方法:
导入数据;
Analyze……Descriptive statistics……Frequencies
选入该列数据,“OK”。
用来描述多选项目的频次。
问卷设计实例:
贵公司产品的主要竞争力表现在(多选):
□外观 □功能 □质量 □个性化 □价格(成本) □交货期 □其它
数据记录要点:
多列记录,有几个选项记几列,选中记为1,未选中记为0。例如如果选中了外观和质量,则多列的记录为1,0,1,0,0,0,0。
SPSS基本操作方法:
导入数据;
Analyze……Multiple Response……Define Sets
选入该问题的多列数据,给新的集合变量取名(在Name那里填一个名字,例如“竞争力”),在Dichotomies Counted value中输入1,“Add”。
Analyze……Multiple Response……Frequencies
选人自定义的集合变量,“OK”。
用来描述变量之间的关联性,比如分析不同销售额企业的产品竞争力的关联关系(这两项之间不一定有关系,可以用logistic分析验证一下)。
问卷设计实例:
参见上面的两项。
数据记录要点:
参见上面两项。
SPSS基本操作方法(单选对单选,单选对多选,单选对多选在操作上略有不同):
导入数据;如果有多选项需要按2的方法定义集合变量。
如果是单选对单选
Analyze……Descriptive statistics……Crosstabs
否则:
Analyze……Multiple Response……Crosstabs
将两变量分别选入行和列中(多选项是选人集合变量,如果是单选对多选还要设置单选项的最大最小值),“OK”
一般用来描述单变量的描述统计量,这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。问卷中用得不是特别多。
问卷设计实例(一般是开放性问题):
贵企业三维CAD已经应用了 年。
数据记录要点:
单列记录,直接记录所填数据。
SPSS基本操作方法:
导入数据;
Analyze……Descriptive statistics……Descriptives
选入该列数据,“Options…”,在其中选择需要的统计项目,问卷常用的项目有Mean(平均值)、Minimum( 最小值)、Maximum(最大值)等,“Continue”, “OK”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13