京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业顶层规划出炉 如何实现
数据产业发展顶层规划也给出了明确的“创新导向”:计划在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。
纲要的出炉也被认为是我国继“互联网+”行动后,进一步从顶层规划上明晰大数据、云计算、移动互联、人工智能等前沿技术发展规划。
用友网络董事长王文京认为,移动互联网、云计算、大数据等正成为社会发展、经济增长的重要驱动,数据资产也成为人类社会继财富资产、人力资产等之后的“第四种资产”,其重要性不言而喻。
中国科学院院士、北京大学教授鄂维南认为,大数据正改变着实体经济与产业格局。例如,基于大数据的计算广告学改变了传统广告行业;一些企业正深入研究非结构化数据处理,以改变传统产业。
聚焦人才培养
各界人士认为,大数据作为新的计算方式,其对产业、实体经济的影响将极其深远。然而,以产业需求为导向的创新研发亟待提升,国内“数据人才”培养也需要进一步优化,以适应市场需求。
首先,以产业需求为导向,成果及时落地转化,企业主体创新力量须得到调动。
“在中国,数据科学发展的很多研究源于市场需求。比如,监控视频处理就是很重要的应用场景。如何让电脑对图像数据进行突破,可以智能判断,这就是很好的大数据科研突破口。”鄂维南说,尽管目前国内大数据产业发展很快,但也存在着缺乏以市场需求为导向的创新突破等问题。
各方认为,唯有释放企业的创新活力,才能推动大数据关键领域取得突破,促进大数据科研成果转化为实际成果。
其次,符合市场需求的人才培养应得到重视。
北京大学校长林建华认为,进入数据时代,人们对获取、存储、分析、处理数据的能力亟待提升。因此,数据科学人才培养成为急需加强的方面。“可以看到产业内很多大企业用非常大的资源,争取学术界数据人才,各方面拉人才。可以说,大数据能否做成,关键在能不能聚焦人才培养。”
而高校和产业界普遍认为,当前对大数据人才的培养仍相对滞后。北京航空航天大学软件学院院长孙伟认为,传统IT教育很难将前沿技术和课堂传授知识结合起来,培养人才很难及时与产业接轨。高校创新人才培养应更加面向市场需求、技术前沿。
以新模式助大数据产业突破
分析认为,国内产业界对数据科学的前沿探索已经加速推进,部分高校也开始了“数据科学家”的培养。在此背景下,我国应进一步打通壁垒,以新模式探索产学研用结合,培育数据人才、助推以市场为导向的数据科学研究突破,促进产业加速发展。
调查发现,以北京中关村为例,大数据已经在商业、金融、交通、医疗、教育等行业示范应用,100多家大数据创新企业从不同领域深植数据资源。
同时,北京航空航天大学、浙江大学等高校与阿里云、慧科教育达成合作,计划3年内培养和认证5万名云计算和数据科学工作者。这些为数据人才培养提供产业与教育基础。
模式的探索已现雏形。北京中关村管委会、海淀区政府、北京大学和北京工业大学等四方启动“北京大数据研究院”,启动建立大数据高精尖创新中心,推动人才培养和科研突破;并成立股份制技术成果转化中心,围绕热点领域产业需求,推动关键共性技术研发、行业大数据分析、成果转化等。
鄂维南透露,研究院将主要聚焦包括交通大数据、金融大数据、移动互联网大数据、医疗大数据等方面,整合分析资源,支撑决策与产业发展。计划一到两年内,研究院将建立数据金融、医疗健康、交通数据、智慧城市、能源环境和气象等分中心,涉及数据与生物、化学、天体、神经科学等学科的交叉研究。
各界认为,这种灵活的产学研结合机制将成为推动大数据快速发展的有效手段。
王文京说,创新机制将有助于创新人才及时对接市场需求,让大数据切实影响改变产业现状
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13