
大数据变革传统投研模式
正是看到了大数据的前景和突破性,博时基金一直在往这方面发力。无论是在研究方法、理念,还是在成果方面,博时基金已有优势。
继2015年初与蚂蚁金服合作推出淘金100大数据指数后,日前,博时基金又和雪球合作推出了雪球智选大数据100指数。对于大数据基金,博时基金副总裁王德英表示,大数据正在改变传统的投研模式,未来博时还将推出一系列大数据基金。
打造大数据基金超市
无论是A股市场,还是海外市场,通过大数据进行量化投资可谓方兴未艾。博时基金早在2009年就已经布局量化投资,随着博时量化模型逐渐成熟,结合“互联网+”的大数据发展趋势,博时基金正在打造大数据基金超市。
据了解,2015年初,博时基金和蚂蚁金服合作,推出了国内第一只电商大数据指数——淘金100。此外,博时基金还与银联、雪球、搜房网合作,推出了银联智惠100、雪球智选100、房地产大数据等3只大数据指数,博时基金还将与多个不同领域/行业的龙头企业开展合作,不断扩展大数据领域。
据介绍,博时基金此次与雪球合作推出的雪球智选大数据100指数,主要是从海量的雪球投资组合中挖掘投资达人的交易热度信号,聚焦组合管理人交易行为。
王德英解释,决定个股股价的因素主要在于两方面,一是公司基本面,二是投资者情绪,大数据基金主要在这两方面着手。此次博时基金和雪球合作的大数据产品,主要是从过往业绩优异的雪球模拟组合中找到有价值的信息。其逻辑在于,雪球模拟组合过往业绩优异的选手选股和选时有独特性,通过对这些模拟组合筛选找到有价值的公司,然后结合综合财务因子、市场驱动因子、雪球热度因子,与其相应近期及长期历史表现之间的相关性作为加权依据,对这3类因子得分进行加权计算,股票综合评分前100只股票即为博时雪球智选大数据100指数基金样本股。
雪球智选大数据100指数以2012年12月31日为基日,以该日收盘后所有样本股的调整市值为基期,以1000点为基点。模拟数据显示,自基日以来到2015年8月14日,该指数累计收益率为379.64%,年化收益率达78.7%。
变革投研模式
从近年各类基金在投资上的表现来看,大数据基金已经崭露头角。王德英表示,传统投资方式主要是投研人员去上市公司调研,了解财务数据、行业信息等来做投资决策,而大数据基金通过海量数据分析,数据量更大,数据维度更全,数据更及时,因此,对公司未来表现的预测确定性更强,从这个角度说,大数据基金正在改变或升级传统的投研方式。
据介绍,大数据技术是利用海量的互联网大数据,如搜索热度、关注度、订单数、成交额、消费笔数等多维度的数据,通过量化模型,更早、更快、更准预判某个行业或者企业未来的景气程度或市场热度。基金公司综合大数据因子、财务价值因子、市场驱动因子等,精选出最具投资价值的个股组合编制成指数。
王德英表示,正是看到了大数据的前景和突破性,博时基金一直在往这方面发力。从时间上来说,博时基金从2009年起开始从华尔街引入量化人才,建立量化投资系统。从模型应用来看,以2014年为例,博时沪深300(3403.850, 38.02,1.13%)指数基金超额收益超过了9%。因此,无论是在研究方法、理念,还是在成果方面,博时基金已有优势。
从人才储备和队伍建设来说,目前博时基金已经在大数据产品上进行了战略布局,整个项目从商务洽谈、数据开发、指数编制、产品成立和产品销售都已成体系,其中,具体负责数据研发的是指数投资部,整个团队有11个人;同时,互联网金融部有专人负责与互联网大数据企业对接。
在有效性方面,博时基金表示,通过对较为长期的历史数据采用科学严格的回测方法,大数据因子确有显著的有效性。这是由数据的及时性及大数据与公司基本面和市场情绪方面的内在逻辑决定的。从实践结果看,大数据因子对于股市往往会有3到6个月的领先性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09