
大数据对法律行业产生的影响
法律是传统手工色彩极其浓厚的行业,强调逻辑、思考、判断。但在互联网颠覆时代的大背景下,法律行业逐渐受到冲击并发生改变,“大数据”、“信息时代”、“互联网+”在法律行业内被不断提及,2015年《中华人民共和国国民经济和社会发展第十三个五年规划纲要》明确把大数据战略提升为国家战略,这些信息都在表明大数据势必会对传统法律行业的发展产生冲击。理脉团队结合国外法学评论和国内相关研究,就大数据可能对法律行业产生的影响展开分析:
律师和客户的关系悄然改变
在传统的律师和客户的关系中,律师通常处于主动地位,而客户相对被动。客户遇到法律问题需要求助律所或律师时,往往会因为缺乏选择参考而依照地域就近选择律所或律师,很多客户没有机会提前挑选法律服务机构,或只能在有限范围内去了解律师的执业水平。但在大数据时代下,每家律所和对应的律师都会有相应的评估报告,根据不同的评估报告,用户能根据自己的需求理性选择律所或律师。举例来讲,某家公司将一项业务交给10-20家律所去完成,根据后期回传的数据,用户能判断出在这项业务中每家律所对相似服务的不同报价,此项任务中律师和其助理分摊的任务比重,按小时计费合理还是按项目整个承包更划算,律所或律师在完成此项业务时额外费用产出的比较,这些内容都会成为客户之后选择合作伙伴的重要依据。
数据时代的到来,会让客户在选择律所或律师时,有更多的参考标准和依据,能在交互关系中占据更为主动的地位,而作为相对方的律师或律所则面临着新的挑战。
打破法律人传统的工作模式
《环球法律评论》专栏作家维克托对法律大数据下有这样的理解:“以一种前所未有的方式,通过对海量法律数据进行分析,对法律问题进行预判,获得巨大价值的产品和服务,或得出新的认知、深刻的观点和主张”。不同于传统的法律数字化资源,法律大数据意味着更大规模量级的数据量,更为重要的是法律大数据不仅是满足传统数据库所做的单纯的法律信息的汇总和整理,法律大数据更为核心的功能在于做出预测。经过海量的数据分析,形成对特定法律问题的裁判预测,进行同案类推,甚至对案件时长、难度、证据要求、胜诉概率、赔偿数额、量刑长短进行预判,推进人工智能发展,实现计算机的自我学习与完善。
这种模式下对律师或律所的利处在于法律大数据能帮助从业人员对案件进行科学合理的预判,甚至预估案件审理法官的裁判倾向,对法律适用做出贴近的分析,会从一定程度上节约法律实践成本。但是从更深层次的角度来看,大数据的普遍运用会对律师的工作带来更高的要求,律师被要求能从庞大的数据源中寻求精准的匹配信息,而用户出于对结果精确性的需要也会对律师提出更为苛刻的条件,除此之外,律师的职业一定程度上会被法律数据分析人员和法律数据服务提供商分化,这些可能出现的情况都是大数据对法律从业者提出的更高的要求。
牵一发而动全身
第一,法学研究模式范式转变。大数据的到来,可能加剧两种法学研究路径的分化,一种继续保持传统的法学教义分析方法,另一种实证研究路径可能加快转向大数据全样本的分析范式,而谁掌握大数据资源、大数据分析工具,则能快速占领实证法学研究的高地。数据的引入还可能改变传统法学研究单兵作战的模式,集团化或团队协作可能在不远的将来成为实证法学研究新模式,而资本可能进一步渗透这种法学研究模式,成为幕后组织运作的智库推动力。
第二,法律大数据可能带来一系列隐私权和其他法律问题。因为大数据在处理大量碎片化、弱相关的数据时,会产生镶嵌理论效应,即“信息拼版的价值高于其组成部分各自价值的总和”。2016年1月6日美国联邦贸易委员会发布了一份题为《大数据:包容工具抑或排斥工具》的研究报告,介绍了大数据的生命周期、大数据技术应用给消费者带来的利益和风险,探讨了应当如何利用大数据,使人们既能充分享受其给社会带来的利益,又能最小化其法律和道德风险。文章也在告诫我们:不能任由大数据运用在法外任性‘裸奔’,涉及个人隐私的法律保护必须提上议程,这是法律大数据在价值层面上的禁区。
第三,大数据和专业分析的结合将在数据时代发挥更大的作用。大数据提供参考依照,但不能解释因果关系。而在未来,客户的需求倾向于“数据+高质量分析报告”的结合.因此,在拥有海量数据后,对大数据背后含义的精准解读尤为关键。对法律数据行业来说,要同时注重数据和专业分析的提供,这样才能综合各种维度,对案件和相关领域做出尽可能准确的分析报告来更好地满足用户的需求。
我们处在一个“巨头齐聚、资本介入、民众法律意识不断提高的时代”,“大数据”与“互联网+”的结合能来领我们走向何处,值得深思。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10