
让大数据助力媒体更上层楼
当下,大数据对人们的影响可谓无处不在;人们对大数据的态度,也可以说是痴迷疯狂。
在中央要求传统媒体加快融合发展,充分运用新技术创新信息传播方式的大背景下,媒体运用大数据助力自身转型发展的步伐也日益加快。在这一过程中,中国日报社里有这样一个团队,因行业趋势推动应运而生,因观念转型较快而为《中国日报》媒体融合提供着技术保障。它不仅为《中国日报》自身的媒体转型努力,更为中国声音更多地传到世界默默奉献着自己的力量,它就是中国日报新媒体联合实验室。
“三驾马车”搭架构 用数据说话
“与中国科学院自动化研究所成立新媒体联合实验室这一举动在当时看来是具有前瞻性的,这种创新精神也激发出了新的活力。在研发、运用大数据技术服务报社融合发展的同时,也为推动行业技术进步、服务国家战略尽自己微薄之力。”采访之初,中国日报社技术部新媒体实验室负责人韩冰这样介绍道。
《中国新闻出版报》记者了解到,实验室通过3年多的建设和完善,构建起涵盖业务创新、技术研发和理论研究3个领域专业资源的“三驾马车”架构,研究成果包括媒体传播效果反馈系统理论,全媒体、多语言覆盖的实时监测平台,基于关键样本的评估模型和跨学科的复合指标体系等。在传统媒体效果评估体系之外,通过对大数据技术的运用,为传播效果量化评估、科学评估找到解决方案。
“我们所做的工作就是用大数据说话,充分、客观、公正。”韩冰说道。
其实,透过中国日报新媒体联合实验室的成立及其大数据的应用,让我们看到了原有媒体业务的外延扩展。谈及伴随新媒体发展的感受,韩冰认为“顺势而为对于媒体而言非常重要,任何人都拧不过趋势”。在这种情况下,传统媒体转型与其观望不如尽早行动。因为目前业界所处的是一个等不起的时代,“马上行动”也是中国日报社在媒体转型中一个切身的感受。而当很多选题、技术大家都能做、都在做的时候,就要比谁想得更早,谁做得更快、更好。
在应用中产生价值 革新理念
“大数据就在那里,关键看它如何为你的机构所用。”采访中,韩冰十分推崇《哈佛商业评论》英文版总编辑阿迪·伊格内休斯说的这句话。生产工具是推动社会进步的重要力量,但生产力中最活跃的因素是人,发明创造工具的是人,使用工具使其发挥最大效用的也是人。互联网时代,人类利用网络以及网络上流动、停留的数据信息,创造出了一个具有无穷魔力的魔法棒,幻化无穷的可能。
“大数据可以说是互联网/物联网数据与人类智慧融合的产物,而不仅仅是一项技术。”这是新媒体实验室对大数据独特的诠释。但是,不落实到行业,不体现在行业应用中,人们对大数据的感知仍然会停留在“它仅仅是一个技术趋势”的肤浅层面。只有让大数据成为新的解决业务问题的手段,才能说明大数据的价值。
如何让大数据落地?韩冰说:“新媒体实验室在研究和孵化大数据应用的同时,更重要的是培育人才和理念。”这就是实验室为实现数据与人的智慧融合进行的尝试。
在新媒体实验室3年的发展历程中,与技术进步伴随的更多的是理念的革新。在此过程中,实验室经历过面对经过艰难攻关构建起来的功能强大、覆盖广泛的全球媒体云平台,却无法准确找到业务部门的“痛点”,也面对无法对症下药的问题;也经历过上级部门面对实验室庞大的指标体系和算法模型赞赏有加,却无从下手、无法“拿来用”的问题。为此,跨学科人才的引进,以及实验室“三驾马车”架构的应运而生,推动“数据”与“人”对接乃至融合。
化繁为简做减法 找到落点
在以快为特征的互联网时代,当人们稳步向前的时候,是不是感到了焦虑,是不是患上了互联网综合症,是不是因为信息爆炸变得无所适从,乱了阵脚?
“不积跬步,无以至千里。”韩冰说,“虽然我们身处研究互联网大数据分析的前沿,我们也时刻感受着互联网的快带来的种种压力和危机感,但做实事的准则从来没有动摇,这一点受到了各方的认可。”实验室通过整合资源实现借力发展,在理论研究、模型构建、技术研发的每一个环节扎实深入推进,在应用推广环节更是考验耐心——大数据理念的普及、使用大数据的人的培养,这是传统媒体向新兴媒体转型过程中的短板,也是巨大挑战。
在此过程中,实验室做的最多的事情是化繁为简做减法,必要的时候甚至让大数据变成小数据,为的是能够在业务中找到一个落点,为的是让用数据的人能在这个过程中逐步增强操控数据的感受,找到感觉。
现阶段,新媒体实验室已经找准自身清晰的发展方向和发展路线。随着中国日报社媒体融合转型的实践越来越深入,与其业务相配套的技术支撑体系将不断完善,走向成熟。而构建于成熟技术体系之上的中国日报社全球联动传播业务,将助力中国日报社构建立体多样、融合发展的现代传播体系,成为具备强大传播力、影响力的媒体集团。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13