
Excel:专业商务图表的设计与制作原则
多年的电信市场经营分析经历中,制作过和看到过无数的统计图表,有好的例子,更多的则是糟糕的例子。如何让图表具有专业外观和专业精神?这篇日志小结一下在用Excel设计与制作专业商务图表中需要注意的地方。
一般原则:
1、是否需要使用图表?不要在不需要的时候也用图表凑数。
2、不要使用太多图表,轰炸多了印象反而不突出。
3、不要使用Excel的默认颜色和样式,建立你自己的图表风格。
4、在图表的标题中说出你的观点,要向标题党学习。
5、在脚注中填上数据来源,能立即增加你的专业性。
6、尽量减少非数据元素,不能减少就使用淡色。
7、色彩要协调柔和,或者使用同一颜色不同深浅,如黑白灰。
8、尽量不使用3D效果,实在想用的话也要很薄很浅。
9、不要使用excel的数据表,如需则自己画个表格放在图表下面。
10、一个图表只表达一个观点,不做过于复杂的图表,必要时分开做图表。
11、图表不要太大,word文档中邮票般大小的图表就很合适。
条形图:
1、数据要从大到小排序,最大的在最上面。
2、条与条的间距要小于条的宽度。
3、有负数时坐标轴标签放右边或图外。
4、标签非常长时,可放在bar的中间。
柱形图:
1、不要使用斜标签,别让读者歪着脑袋看。
2、分类标签文字过长时,使用条形图。
3、Y轴刻度应从0开始,即使要从非0开始,也要在底部假意标上0及截断标识。
4、同一数据序列不应使用不同颜色。
5、有负数时坐标轴标签放上边或图外。
曲线图:
1、线条要足够粗,明显粗过所有非数据元素。
2、一般不要使用marker。
3、不要放太多线条,以免杂乱,必要时分开做图表。
4、不要使用斜标签,让读者歪着脑袋看
5、Y轴刻度应从0开始,即使要从非0开始,也要在底部假意标上0及截断标识。
6、可不使用图例,直接标在曲线边。
7、多条曲线时,强调其中需要强调的那根,最粗线型或最深颜色。
8、做小而多的曲线图时,各图坐标刻度要保持一致。
饼图:
1、数据要从大到小排序,最大的从12点位置开始。
2、数据项不要太多,小于7项或者5项,太细的归于其他。
3、不要使用爆炸式,最多可将某一片扇区分离以强调。
4、不要使用图例,直接标在扇区上或旁边。
5、尽量不使用标签连线,如用则切忌凌乱,最好手工画直/折线。
6、尽量不使用3D形式,如用则厚度要薄、仰角要大。
7、做有色饼图时,边框线用白色,可产生切割感。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10