
深挖大数据金矿
大数据的本质特征就是“大”。究竟“多大”才算“大”?“大”不是一个简单的数量,而是一个多维的无限的变量。概括起来说,“大”是一个五“V”空间:第一个维度是数量(Vol-ume),主要表现为数据量的快速增大;第二个维度是速度(Veiocity),主要表现为数据增长的速度在加快;第三维度是数据的多样性(Variety),主要表现为新的数据来源和新的数据种类的增加;第四个维度是数据的价值(Value),主要表现为对这些数据的使用和挖掘产生的价值;第五个维度,也是最重要的一个“V”,就是“数聚”(Variable),它使前面四个“V”的数据发生几何级数的变化,从而让数据实现从量变到质变的飞跃。
正如一位美国记者在一篇文章中写到的,大数据是什么并不重要,重要的是大数据正在改变人对世界的看法。在大数据时代,人获取信息的方式、交往或交友的方式、生活方式、生产方式、思维方式、社会组织管理方式都将被跨界、跨代颠覆式改变。
大数据是新的科技革命与新的产业革命交叉融合的引爆器,大数据让发达地区与欠发达地区站在同一个起跑线上。贵州发展大数据,是倒逼政府改革,推进产业转型的有益探索,是坚守发展和生态“两条底线”,发挥后发优势,实现后发赶超和绿色崛起的创新战略,也是新常态下东部与西部、沿海与内地、发达地区与欠发达地区经济的再平衡。这种再平衡将引发中国经济结构的深度调整,重塑中国经济版图。
全球化开放平台 引领“中国数谷”贵阳崛起
贵州商报:贵阳为何提出建立大数据战略重点实验室,实验室的建立有何实际意义。
连玉明:大数据战略重点实验室是根据贵州省委省政府、贵阳市委市政府发展大数据战略部署设计,在贵州省科技厅支持下,由贵阳市人民政府与北京市科学技术委员会共建的跨学科、专业性、国际化、开放型的跨区域研究平台,它依托贵州大学贵阳创新驱动发展战略研究院组建和运行。这是继建立中关村贵阳科技园、北京贵阳大数据应用展示中心之后京筑创新驱动区域合作又一重大成果,是国家实验室管理机制的一次创新实践,是贵州、贵阳发展大数据的重要里程碑。
大数据战略重点实验室是一个全球化的开放平台。实验室聚集国内外大数据相关专业研究者、管理者和决策者,搭建跨区域协作创新平台、专业化决策咨询平台、网络化成果转化平台和国际化合作交流平台,有助于创新资源和创新人才在贵阳聚合,引领“中国数谷”在贵阳崛起。
大数据战略重点实验室立足全球大数据发展趋势和中国大数据发展实践,以大数据发展的重大理论和现实问题为主攻方向,加强大数据发展全局性、战略性、前瞻性研究和咨询,建设具有较大影响力和国际知名度的大数据高端战略智库,奋力打造中国大数据发展思想和战略策源地。
跨界 跨代 跨区域 五大研究策源中国大数据发展战略
贵州商报:大数据战略重点实验室在做什么样的研究,怎么来服务和助推贵阳大数据产业的发展?实验室研究成果如何落地。
连玉明:大数据战略重点实验室的建立是从理论创新为突破口的。《块数据— 大数据时代真正到来的标志》《DT时代—从“互联网+”到“大数据×”》《创新驱动力— 中国数谷的崛起》三个专著的出版,标志着大数据战略重点实验室在贵州率先启航。基于此,大数据战略重点实验室以五大着力点开展研究及其成果转化:
一是着眼全球大数据发展趋势和中国大数据发展实践,建立全球大数据理论信息中心,建设中国大数据发展规划数据库,出版《全球大数据发展报告》。
二是构建块数据分析理论模型和应用模型,为贵州、贵阳乃至全国发展大数据提供理论支撑和方法支持。
三是研究、编制和发布“大数据指数”,包括大数据发展指数、大数据创新指数、大数据城市指数、大数据社区指数、大数据生活指数和大数据品牌指数。出版年度《大数据蓝皮书》。
四是建立DT空间,搭建众联、众创、众包、众筹创客平台,加快产学研联动,加速成果转化应用,建立国际创客空间。
五是建立“中国DT产业50人论坛”,搭建对外交流平台,打造中国大数据发展的思想和战略策源地。
这五项研究,无论是对贵阳发展大数据,还是中国发展大数据都是一种创新性的、极具前瞻性的研究和探索。必须说明的是,大数据战略重点实验室虽然建在贵州贵阳,但它并不是一个封闭的空间。它更多的是借助北京科技创新中心和国家创新平台的资源,成为一个跨界、跨代、跨区域的开放空间。这个开放空间是全球性的。我们完全超越传统的实验室运行和管理模式,发挥共建优势,整合社会力量,创新市场机制。我们秉承“不求所有、不求所在,但求所用”的原则,可以在北京、上海、杭州、武汉、广州等地建立研究基地,也可以与阿里、腾讯、百度等企业开展联合研究。对贵州、贵阳而言,我们引进的是新思想,转化的是新成果,真正成为助推贵州、贵阳乃至中国大数据发展的战略策源地、人才孵化器、创新试验场、政策先行区。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13