
如何用R语言对城管事件数据分析
这次使用主成分分析主要目的并不是降维,而是分析城管数据中的事件类别之间是否存在关系,当然,城管事件类型有好几百,这里就只选取从去年九月到目前发生量前十的事件类别;如下图,排名前十的事件类别依次为,车辆乱停放,乱堆物料堆,非法张贴小广告,店铺出店经营,自备容器外放,违规标语宣传品,机动车乱停放,暴露垃圾,地面不洁,道路不洁。
确定好这十个类别后就是数据的提取了,这时候我们要注意一下数据结构,和数据样本量,为什么呢?因为在主成分分析的时候事件类别只能是属性,也就是说事件类别是一列;这时候看看一下城管数据里面存在的数据结构,数据记录数必须是属性的6~10倍,这时候观察城管数据结构,明显不是我们想要的。
于是写个SQL转换一下数据结构,起的别名没有按照规则来,这是个失误;
这时候就要使用R语言去做分析了,首先是让我们能从数据库里拿数据,所以创建一个数据库链接,安装包RODBC
R语言代码
install.packages("RODBC") library(RODBC) jixiao_connect <- odbcConnect("jixiao",uid="jixiao",pwd = "*****",believeNRows=FALSE)
这时候我们就创建了一个数据库连接jixiao_connect,这时候我们就要提取数据
R语言代码
jixiao_data <- sqlQuery(jixiao_connect," select sum(case when t.kind_code_thd='车辆乱停放' then 1 else 0 end) kind_one ,sum(case when t.kind_code_thd='乱堆物堆料' then 1 else 0 end) kind_two ,sum(case when t.kind_code_thd='非法张贴小广告' then 1 else 0 end) kind_three ,sum(case when t.kind_code_thd='店铺出店经营' then 1 else 0 end) kind_code_4 ,sum(case when t.kind_code_thd='自备容器外放' then 1 else 0 end) kind_code_5 ,sum(case when t.kind_code_thd='违规标语宣传品' then 1 else 0 end) kind_code_6 ,sum(case when t.kind_code_thd='机动车乱停放' then 1 else 0 end) kind_code_7 ,sum(case when t.kind_code_thd='地面不洁' then 1 else 0 end) kind_code_8 ,sum(case when t.kind_code_thd='暴露垃圾' then 1 else 0 end) kind_code_9 ,sum(case when t.kind_code_thd='无照经营游商' then 1 else 0 end) kind_code_10 from test_erkang t where t.district_name in ('美兰区','龙华区','秀英区','琼山区') GROUP BY T.DISTRICT_NAME,TO_CHAR(T.REVIEW_FIRST_DATE,'YYYYMM')") jixiao_data
验证数据是否被提取,说明数据已经提取成功
我们在安装主成分需要用的包
R代码
install.packages("psych") library(psych)
首先我们要做的是需要确定主成分需要几个,这时候我们就需要cattell碎石检验来确定主成分个数,也就是保留特征值大于1的主成分,因为特征值大于1的主成分能解释较多的方差;
R代码
fa.parallel(jixiao_date,fa='pc',n.iter = 100,show.legend=FALSE)
上图中我们应该选取3个主成分
R代码
pc <- principal(jixiao_date,nfactors=3,rotate = 'varimax') pc
后面那个是我们选择的主成分旋转的方法,为了主成分之间能更容易的解释,结果如下
PC1列下的系数是和各个事件类别的相关系数,h2列表示成分能够解释方差的多少,u2列表示没法解释解释方差的比例,事件KIND_ONE也就是车辆乱停放,主要相关联的是主成分PC1,相关系数为0.97,PC2和PC3的相关系数分别为0.05,0.07,主成分能够解释车辆乱停放95%的方差,无法被解释的比例为0.055;proportion var 表示解释整个数据集的解释程度,PC2解释变量30%方差,PC1解释变量26%方差,PC3解释变量21%方差,主成分能够解释整个变量77%的方差;
对主成分进行可视化
R代码
fa.diagram(pc)
又上图我们可以知道主成分组成,大致归类为
PC1:无照经营游商,暴露垃圾,车辆乱停放
PC2:乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放,地面不洁
PC3:店铺出店经营,违规标语宣传品;
根据业务和个人的推测
我推测PC1所表示的繁华的步行街道成分,PC2表示的是城中村成分,PC3表示的是主干道成分。
建议和小结
1、可以认为乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放和地面不洁是一类相关联事件类别,无照经营游商,暴露垃圾和车辆乱停放是一类相关联事件类别,店铺出店经营,违规标语宣传品可以认为是一类相关联的一类事件类型
2、可以认定主要事件来源是来自城中村,主干道,和步行街道;
3、步行街道给的相应的措施可以增加相应的非机动的停车位,划分小贩经营点,增加环卫人员的清扫频率
4、城中村:提高相应的停车规划,集中整治城中村环境卫生
5:、主干道:相应的增加巡查员的巡查频率即可
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10