
K-means算法及文本聚类实践
K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果。
k-means算法需要事先指定簇的个数k,算法开始随机选择k个记录点作为中心点,然后遍历整个数据集的各条记录,将每条记录归到离它最近的中心点所在的簇中,之后以各个簇的记录的均值中心点取代之前的中心点,然后不断迭代,直到收敛,算法描述如下:
上面说的收敛,可以看出两方面,一是每条记录所归属的簇不再变化,二是优化目标变化不大。算法的时间复杂度是O(K*N*T),k是中心点个数,N数据集的大小,T是迭代次数。
k-means的损失函数是平方误差:
其中ωkωk表示第k个簇,u(ωk)u(ωk)表示第k个簇的中心点,RSSkRSSk是第k个簇的损失函数,RSSRSS表示整体的损失函数。优化目标就是选择恰当的记录归属方案,使得整体的损失函数最小。
k-meams算法的能够保证收敛,但不能保证收敛于全局最优点,当初始中心点选取不好时,只能达到局部最优点,整个聚类的效果也会比较差。可以采用以下方法:k-means中心点
1、选择彼此距离尽可能远的那些点作为中心点;
2、先采用层次进行初步聚类输出k个簇,以簇的中心点的作为k-means的中心点的输入。
3、多次随机选择中心点训练k-means,选择效果最好的聚类结果
k-means的误差函数有一个很大缺陷,就是随着簇的个数增加,误差函数趋近于0,最极端的情况是每个记录各为一个单独的簇,此时数据记录的误差为0,但是这样聚类结果并不是我们想要的,可以引入结构风险对模型的复杂度进行惩罚:
λλ是平衡训练误差与簇的个数的参数,但是现在的问题又变成了如何选取λλ了,有研究[参考文献1]指出,在数据集满足高斯分布时,λ=2mλ=2m,其中m是向量的维度。
另一种方法是按递增的顺序尝试不同的k值,同时画出其对应的误差值,通过寻求拐点来找到一个较好的k值,详情见下面的文本聚类的例子。
我爬取了36KR的部分文章,共1456篇,分词后使用sklearn进行k-means聚类。分词后数据记录如下:
使用TF-IDF进行特征词的选取,下图是中心点的个数从3到80对应的误差值的曲线:
从上图中在k=10处出现一个较明显的拐点,因此选择k=10作为中心点的个数,下面是10个簇的数据集的个数。
聚类完成后,我们需要一些标签来描述簇,聚类完后,相当于每个类都用一个类标,这时候可以用TFIDF、互信息、卡方等方法来选取特征词作为标签。关于卡方和互信息特征提取可以看我之前的文章文本特征选择,下面是10个类的tfidf标签结果。
Cluster 0: 商家 商品 物流 品牌 支付 导购 网站 购物 平台 订单
Cluster 1: 投资 融资 美元 公司 资本 市场 获得 国内 中国 去年
Cluster 2: 手机 智能 硬件 设备 电视 运动 数据 功能 健康 使用
Cluster 3: 数据 平台 市场 学生 app 移动 信息 公司 医生 教育
Cluster 4: 企业 招聘 人才 平台 公司 it 移动 网站 安全 信息
Cluster 5: 社交 好友 交友 宠物 功能 活动 朋友 基于 分享 游戏
Cluster 6: 记账 理财 贷款 银行 金融 p2p 投资 互联网 基金 公司
Cluster 7: 任务 协作 企业 销售 沟通 工作 项目 管理 工具 成员
Cluster 8: 旅行 旅游 酒店 预订 信息 城市 投资 开放 app 需求
Cluster 9: 视频 内容 游戏 音乐 图片 照片 广告 阅读 分享 功能
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13