
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了。神经网络有很多种:前向传输网络、反向传输网络、递归神经网络、卷积神经网络等。本文介绍基本的反向传输神经网络(Backpropagation 简称BP),主要讲述算法的基本流程和自己在训练BP神经网络的一些经验。
BP神经网络的结构
神经网络就是模拟人的大脑的神经单元的工作方式,但进行了很大的简化,神经网络由很多神经网络层构成,而每一层又由许多单元组成,第一层叫输入层,最后一层叫输出层,中间的各层叫隐藏层,在BP神经网络中,只有相邻的神经层的各个单元之间有联系,除了输出层外,每一层都有一个偏置结点:
虽然图中隐藏层只画了一层,但其层数并没有限制,传统的神经网络学习经验认为一层就足够好,而最近的深度学习不这么认为。偏置结点是为了描述训练数据中没有的特征,偏置结点对于下一层的每一个结点的权重的不同而生产不同的偏置,于是可以认为偏置是每一个结点(除输入层外)的属性。我们偏置结点在图中省略掉:
在描述BP神经网络的训练之前,我们先来看看神经网络各层都有哪些属性:
训练一个BP神经网络,实际上就是调整网络的权重和偏置这两个参数,BP神经网络的训练过程分两部分:
我们先来看前向传输。
前向传输(Feed-Forward前向反馈)
在训练网络之前,我们需要随机初始化权重和偏置,对每一个权重取[-1,1]的一个随机实数,每一个偏置取[0,1]的一个随机实数,之后就开始进行前向传输。
神经网络的训练是由多趟迭代完成的,每一趟迭代都使用训练集的所有记录,而每一次训练网络只使用一条记录,抽象的描述如下:
首先设置输入层的输出值,假设属性的个数为100,那我们就设置输入层的神经单元个数为100,输入层的结点Ni为记录第i维上的属性值xi。对输入层的操作就这么简单,之后的每层就要复杂一些了,除输入层外,其他各层的输入值是上一层输入值按权重累加的结果值加上偏置,每个结点的输出值等该结点的输入值作变换
前向传输的输出层的计算过程公式如下:
Ij=∑iWijOi+θj
Oj=11+e−Il
对隐藏层和输出层的每一个结点都按照如上图的方式计算输出值,就完成前向传播的过程,紧接着是进行逆向反馈。
逆向反馈(Backpropagation)
逆向反馈从最后一层即输出层开始,我们训练神经网络作分类的目的往往是希望最后一层的输出能够描述数据记录的类别,比如对于一个二分类的问题,我们常常用两个神经单元作为输出层,如果输出层的第一个神经单元的输出值比第二个神经单元大,我们认为这个数据记录属于第一类,否则属于第二类。
还记得我们第一次前向反馈时,整个网络的权重和偏置都是我们随机取,因此网络的输出肯定还不能描述记录的类别,因此需要调整网络的参数,即权重值和偏置值,而调整的依据就是网络的输出层的输出值与类别之间的差异,通过调整参数来缩小这个差异,这就是神经网络的优化目标。对于输出层:
Ej=Oj(1−Oj)(Tj−Oj)
其中Ej表示第j个结点的误差值,Oj表示第j个结点的输出值,Tj记录输出值,比如对于2分类问题,我们用01表示类标1,10表示类别2,如果一个记录属于类别1,那么其T1=0,T2=1。
中间的隐藏层并不直接与数据记录的类别打交道,而是通过下一层的所有结点误差按权重累加,计算公式如下:
Ej=Oj(1−Oj)∑kEkWjk
其中Wjk表示当前层的结点j到下一层的结点k的权重值,Ek下一层的结点k的误差率。
计算完误差率后,就可以利用误差率对权重和偏置进行更新,首先看权重的更新:
ΔWij=λEjOi
Wij=Wij+ΔWij
其中λ表示表示学习速率,取值为0到1,学习速率设置得大,训练收敛更快,但容易陷入局部最优解,学习速率设置得比较小的话,收敛速度较慢,但能一步步逼近全局最优解。
更新完权重后,还有最后一项参数需要更新,即偏置:
Δθj=λEj
θj=θj+Δθj
至此,我们完成了一次神经网络的训练过程,通过不断的使用所有数据记录进行训练,从而得到一个分类模型。不断地迭代,不可能无休止的下去,总归有个终止条件
训练终止条件
每一轮训练都使用数据集的所有记录,但什么时候停止,停止条件有下面两种:
使用BP神经网络分类
我自己写了一个BP神经网络,在数字手写体识别数据集MINIST上测试了一下,MINIST数据集中训练图片有12000个,测试图片20000个,每张图片是28*28的灰度图像,我对图像进行了二值化处理,神经网络的参数设置如下:
训练经过约50次左右迭代,在训练集上已经能达到99%的正确率,在测试集上的正确率为90.03%,单纯的BP神经网络能够提升的空间不大了,但kaggle上已经有人有卷积神经网络在测试集达到了99.3%的准确率。代码是去年用C++写的,浓浓的JAVA的味道,代码价值不大,但注释比较详细,可以查看这里,最近写了一个Java多线程的BP神经网络,但现在还不方便拿出来,如果项目黄了,再放上来吧。
训练BP神经网络的一些经验
讲一下自己训练神经网络的一点经验:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27