京公网安备 11010802034615号
经营许可证编号:京B2-20210330
采集和分析大数据时所面临的问题
你或许很熟悉这样一个统计结论:世界90%的数据是过去几年里产生的。事实上,过去三十年中,全世界的数据量大约每两年增加10倍——远远超过了计算机领域的摩尔定律。
这样的信息增长速率会带来一些问题,其中之一便是现时的数据量总是远远超过即使最近的过去。想象你正在通过一本相片簿回顾人生的头18年,假设在两岁时你有两张照片,如果信息增长速率与世界数据量相同,那么在你6到8岁时,你会有惊人的2000张照片;10到12岁时有20万张照片;而在16到18岁时,照片数量会达到2亿张,相当于在最后两年中,每秒有3张以上的照片。
当然,这并非是全球数据增长情况的完美类比。首先,世界大部分数据的增长源于有更多的人创造出了更多的信息来源,同时伴随更大、更精细的格式。不过,有关比例的观点还是成立的。如果你像前述的例子那样回顾以往的记录,或者试图进行分析,那距离越久远的过去就会变得越无关紧要。
这就是目前采集和分析大数据时所面临的问题。当你开始以更长远的视角往前回溯时,会发现近期的事情太多,而以前的事情太少。短视是结构性的,对短期趋势的过度估计是压倒性的,同时却忽略了历史的经验教训。
为了理解这个问题的重要性,需要考虑社会科学中有关“近期偏差”(recency bias,又称近因效应)的研究发现。近期偏差是指在判断趋势时,认为未来事件与近期体验更加类似。这可以说是某种“可利用性法则”(availability heuristic) ——不恰当地以最容易被知觉到的信息来作为思考的基础。这还是一种普遍的心理学特征。举例来说,如果在你居住的地方,过去几年中夏季都异乎寻常地寒冷,你 可能会认为夏天正在变得更冷——或者说你当地的气候正在变冷。事实上,你不应当把任何东西都塞到数据里分析。你需要有一个长远的视角,才能认识真正有意义的气候趋势。在短时期内,你最好不进行任何猜测。不过,我们之中又有谁能真正做到这点呢?
现实生活中大部分复杂的趋势正是如此:股票市场、经济发展、企业的成功或失败、战争或和平、国家关系、帝国的崛起和衰落等等。短期分析不仅不够扎实,而且毫无益处甚至会带来误导。看看2009年金融危机即将到来的时候,还有那么多经济学家信誓旦旦地宣称这一事件不会发生。认为从那种时间尺度的数据就能做出扎实的预测,本身就有很大的问题。
我们还应当记住,在决定哪些数据是保存还是删除的时候,新颖性往往会成为主要的考虑因素。旧的淘汰,新的进来,在这个搜索算法本质上偏向于新鲜事物的数字世界中,这是明显的趋势。从高等法院的裁决,到所有的社交媒体服务平台上,我们到处都可以看到已经失效的网址。对当前的偏好已经渗透到我们身边几乎所有的技 术中,大多数人已经习惯用个四五年就把原本光鲜亮丽的机器抛弃。
怎么办?这不仅是一个如何更好保存旧数据的问题——尽管这并不是个坏主意,想想我们现在还有什么东西能保留10年的。更重要的是,这个问题关系到确定哪些东西值得优先保存,如何在知识的名义下,确定哪些信息最有意义。
或许我们需要的是“智能遗忘”:让我们的工具变得更会放弃最近的过去,从而在整体视角上保持更大的连续性。这有点像是重新组织一本相片簿,尽管加上了更多的 数学方法。什么时候两百万张照片的价值比两千张照片更低?什么时候较大的样品覆盖的范围反而较小?什么时候细节水平能提供有用的质疑证据,而不是虚假的自信?
许多数据集是无法缩减的,而且在完整的情况下才最宝贵,比如,基因序列、人口统计学数据、地理和物理学的原始观测数据等。科学性越弱,数据规模与数据的质量更可能呈现负相关,此时时间本身就成为更加重要的过滤工具。我们如果不仔细选择过去保存下来的有价值、有意义的东西,那它们就会悄无声息地淹没在如今日益增长的噪音之中。
今天的企业、个人和政府机构都能够获得比以往(甚至就在几年前)大许多数量级的数据,但这些数据并没有获得更多的处理时间。利用越来越高效的工具,董事会成员、首席执行官、政府官员等决策者可以就已有的信息提出更有意义的问题。单纯的堆积不是问题的答案。在一个数据量越来越大的时代,如何选择不知道哪些事情,与选择做什么事情一样重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06