京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关联规则挖掘在电商、零售、大气物理、生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法。
啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书《啤酒与尿布》,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理。我们这里以一个超市购物篮迷你数据集来解释关联规则挖掘的基本概念:
| TID | Items |
| T1 | {牛奶,面包} |
| T2 | {面包,尿布,啤酒,鸡蛋} |
| T3 | {牛奶,尿布,啤酒,可乐} |
| T4 | {面包,牛奶,尿布,啤酒} |
| T5 | {面包,牛奶,尿布,可乐} |
表中的每一行代表一次购买清单(注意你购买十盒牛奶也只计一次,即只记录某个商品的出现与否)。数据记录的所有项的集合称为总项集,上表中的总项集S={牛奶,面包,尿布,啤酒,鸡蛋,可乐}。
一、关联规则、自信度、自持度的定义
关联规则就是有关联的规则,形式是这样定义的:两个不相交的非空集合X、Y,如果有X-->Y,就说X-->Y是一条关联规则。举个例子,在上面的表中,我们发现购买啤酒就一定会购买尿布,{啤酒}-->{尿布}就是一条关联规则。关联规则的强度用支持度(support)和自信度(confidence)来描述,
支持度的定义:support(X-->Y) = |X交Y|/N=集合X与集合Y中的项在一条记录中同时出现的次数/数据记录的个数。例如:support({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/数据记录数 = 3/5=60%。
自信度的定义:confidence(X-->Y) = |X交Y|/|X| = 集合X与集合Y中的项在一条记录中同时出现的次数/集合X出现的个数 。例如:confidence({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/啤酒出现的次数=3/3=100%;confidence({尿布}-->{啤酒}) = 啤酒和尿布同时出现的次数/尿布出现的次数 = 3/4 = 75%。
这里定义的支持度和自信度都是相对的支持度和自信度,不是绝对支持度,绝对支持度abs_support = 数据记录数N*support。
支持度和自信度越高,说明规则越强,关联规则挖掘就是挖掘出满足一定强度的规则。
二、关联规则挖掘的定义与步骤
关联规则挖掘的定义:给定一个交易数据集T,找出其中所有支持度support >= min_support、自信度confidence >= min_confidence的关联规则。
有一个简单而粗鲁的方法可以找出所需要的规则,那就是穷举项集的所有组合,并测试每个组合是否满足条件,一个元素个数为n的项集的组合个数为2^n-1(除去空集),所需要的时间复杂度明显为O(2^N),对于普通的超市,其商品的项集数也在1万以上,用指数时间复杂度的算法不能在可接受的时间内解决问题。怎样快速挖出满足条件的关联规则是关联挖掘的需要解决的主要问题。
仔细想一下,我们会发现对于{啤酒-->尿布},{尿布-->啤酒}这两个规则的支持度实际上只需要计算{尿布,啤酒}的支持度,即它们交集的支持度。于是我们把关联规则挖掘分两步进行:
1)生成频繁项集
这一阶段找出所有满足最小支持度的项集,找出的这些项集称为频繁项集。
2)生成规则
在上一步产生的频繁项集的基础上生成满足最小自信度的规则,产生的规则称为强规则。
关联规则挖掘所花费的时间主要是在生成频繁项集上,因为找出的频繁项集往往不会很多,利用频繁项集生成规则也就不会花太多的时间,而生成频繁项集需要测试很多的备选项集,如果不加优化,所需的时间是O(2^N)。
三、Apriori定律
为了减少频繁项集的生成时间,我们应该尽早的消除一些完全不可能是频繁项集的集合,Apriori的两条定律就是干这事的。
Apriori定律1):如果一个集合是频繁项集,则它的所有子集都是频繁项集。举例:假设一个集合{A,B}是频繁项集,即A、B同时出现在一条记录的次数大于等于最小支持度min_support,则它的子集{A},{B}出现次数必定大于等于min_support,即它的子集都是频繁项集。
Apriori定律2):如果一个集合不是频繁项集,则它的所有超集都不是频繁项集。举例:假设集合{A}不是频繁项集,即A出现的次数小于min_support,则它的任何超集如{A,B}出现的次数必定小于min_support,因此其超集必定也不是频繁项集。
利用这两条定律,我们抛掉很多的候选项集,Apriori算法就是利用这两个定理来实现快速挖掘频繁项集的。
四、Apriori算法
Apriori是由a priori合并而来的,它的意思是后面的是在前面的基础上推出来的,即先验推导,怎么个先验法,其实就是二级频繁项集是在一级频繁项集的基础上产生的,三级频繁项集是在二级频繁项集的基础上产生的,以此类推。
Apriori算法属于候选消除算法,是一个生成候选集、消除不满足条件的候选集、并不断循环直到不再产生候选集的过程。
上面的图演示了Apriori算法的过程,注意看由二级频繁项集生成三级候选项集时,没有{牛奶,面包,啤酒},那是因为{面包,啤酒}不是二级频繁项集,这里利用了Apriori定理。最后生成三级频繁项集后,没有更高一级的候选项集,因此整个算法结束,{牛奶,面包,尿布}是最大频繁子集。
算法的思想知道了,这里也就不上伪代码了,我认为理解了算法的思想后,子集去构思实现才能理解更深刻,这里贴一下我的关键代码:
如果想看完整的代码,可以查看我的github,数据集的格式跟本文所述的略有不通,但不影响对算法的理解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27