
大数据时代 我们还有隐私吗
大数据对个人隐私权的影响。怎样保护网络隐私权?
随着数字信息技术的不断发展,“网络匿名”有可能会变成“数学上不可能”的事。
1995年,欧盟出台的隐私法例将“个人资料”定义为可以直接或间接识别一个人的信息。很显然,当时立法者考虑的是那些带有身份标识号的文件资料之类的东西,这些标识号就好像人的姓名,而立法者们希望它们可以得到保护。
如今,“个人资料”这一定义所包含的内容已经远远超出当年那些立法官员的想象,甚至可以轻易地超过18年前他们通过这项法例时整个世界的数据量。
来看看到底发生了什么。首先,这个世界每年所创造的数据量在以指数形式增长,去年,这一数字则达到了2.8ZB(1ZB =10244GB),听起来就很可怕的数字,而且据知名信息行业咨询服务商IDC称,这一数字将在2015年翻一番。此外,这些数据中的3/4是由个体人在创造或移动数字文件时贡献的。举例来说,一个标准的美国上班族每年可以贡献180万MB的数据量,平均每天则有约5000MB,这其中包括下载的电影、文档、电邮以及这些数据通过移动或非移动互联网传播时所产生的附加数据量。
尽管这其中的大部分数据都是不可见的,似乎也并不携带任何个人信息,但事实并非如此。现代数据科学已经发现几乎任何类型的数据都能用来识别创造它的人,就好比指纹一样。比如说你在网上下载的电影、你的手机发出的定位信息,甚至是你被监控摄像机所拍下来的步态都可以用来识别你。实际上,数据越多,其中可以称得上隐私的就越少。普林斯顿大学的计算机科学家阿尔文德·纳拉亚南(Arvind Narayanan)称,只要有合理的商业动机来推动数据挖掘的进程,任何形式的隐私都是“算法上不可能”(algorithmically impossible)的。
可以说,我们已经在这条不归路上越走越远。那些以往被我们认为是个人资料的信息——姓名或者信用卡号——如今都已经被安客诚(Acxiom)公司这样的数据代理商用作交易,它拥有500多万名分布在世界各地的消费者的个人信息。人们在填写了某些调查表或者注册了一些服务后,相应的数据就进入了公共领域。这也是这些代理商的数据来源。
安客诚可以利用一些信息来推测你的生活方式、兴趣爱好和日常活动,比如你的汽车品牌和使用时间、你的收入和投资状况、你的年龄、受教育程度以及邮政编码。所有这些信息可以将你归类为70种不同的“PersonicX”集群中的一个。除此之外,你最近有离过婚吗,或者你刚刚变成了一名空巢老人?这些“人生大事”更可以将一个人从一个消费阶层转移到另一个,而这正是安客诚及其广告客户的关键兴趣所在。安客诚称其可以通过分析数据来预测3000种不同的行为及心理倾向,比如说一个人会在某两个品牌间做出怎样的选择。
虽说听起来很厉害,但这些数据代理商如今已经被认为是过时的了,尤其是跟Facebook这样的互联网公司相比。Facebook已经可以实现对个人信息收集的自动化与实时化,其首次公开募股时的财务档案显示,Facebook上每位用户的图片和视频资料数据量约为111MB,而Facebook的用户数如今已经超过了10亿,这可是整整100PB(1 PB = 10242 GB)的个人信息数据!在一些法律案件中,Facebook所记录的数据也派上了用场,其中包括涉案人发过的文字信息、点过“赞”的东西以及所用过的电脑的IP地址等,这些资料加起来足有800页,这800页就又给每位用户增加了几MB的数据量。
线上和线下的数据如今正在逐步融合,进而帮助营销人员更精准地进行广告投放,这也是众多“数字隐私”拥护者的烦心事。今年二月,Facebook宣布与包括安客诚在内的多家数据代理商展开合作,通过整合各自的数据资源来构造现实世界与虚拟网络之间的联系。一个月后,安客诚的首席科学官在一次投资者会议上称他们的数据已经与全美90%的社会档案建立了链接。
这些数据往往被描述为“在某种程度上具有匿名性”,但是牵涉到的信息越多,这样的说法就越显站不住脚。就拿移动通信运营商来说,他们会记录用户的位置和手机号码,然后再将这些综合数据卖给商家。尽管位置数据的匿名化是可以实现的,但是来自MIT的伊夫·亚历山大(Yves-Alexandre de Montjoye)和塞萨尔·A·伊达尔戈(César A. Hidalgo)却发现只要通过同一手机的四个不同的位置数据点就可以精确定位其拥有者。不光是移动通信运营商,你所用的浏览器也会“出卖”你的个人信息,就连最近刚刚兴起的可穿戴设备(如Google Glass)也被认为会引起隐私担忧。
毫无疑问,可以获得的个人大数据量越多,其中的信息量就越大。只要拥有了足够多的数据,我们甚至可能发现有关于一个人的未来信息。去年,来自美国罗彻斯特大学的亚当·萨迪克(Adam Sadilek)和来自微软实验室的工程师约翰·克拉姆(John Krumm)发现他们可以大致预测一个人未来可能到达的位置,最多可以预测到80周后,其准确度高达80%。为此,他们收集了32000天里307个人和396辆车的GPS数据并建造了一个“大规模数据集”。
两人想象了一下这一研究成果的商业应用,他们说到时候会出现这样的广告:“需要理发吗?四天后你就会在这家发廊周围100米内,届时它将会有优惠活动哦!”
这两人还为他们的系统起了一个名字——“遥远未来”(Far Out),没错,这也正是大数据时代下的个人信息将带我们去的地方。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10