京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Excel绘制指定区间的正态分布曲线下面积图
正态分布曲线下面积是很有实际应用价值的。在工程能力指数的评估、产品质量分析和教育评估分析方面都发挥了很大作用。
在正态分布的密度函数中有上述两个常数:算数平均数μ和标准差σ。正态分布的值有99.74%落在(μ-3σ,μ+3σ)区间内,也就是说落在以平均值为中心的左右各3个σ(共六个σ)的范围内,所谓管理学中的“三西格玛”或“六西格玛”就源于此。Excel中可以使用正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),来表达正态分布,其中:x —“值”,是要求分布的随机变量数值;μ—“平均数”,是分布的算数平均数;σ—“标准差”,是分布的标准差;逻辑值—“积累与否”,是决定函数的逻辑值,其中取值为 “TRUE”(真),则返回累计分布函数;取“FALSE”(伪),则NORMDIST会返回正态分布函数的高度。如果为了绘制正态分布曲线,就要取“FALSE”。
Mly网友来信问起我在《Excel:正态分布函数曲线下的面积及其应用》中的图-3. μ=60,σ=15,在(-∞,55)的正态分布曲线二维面积图(蓝斜纹)如下图,是如何绘制的。
这篇《Excel:正态分布函数曲线下的面积及其应用》主要是谈正态分布及其曲线下面积的应用,这张图是运用的一个例子,至于图表如何作出的具体步骤,文中就未作介绍。过后,正好有一位网友MZY来信问起了有关定积分的指定区间的曲线下面积的作图,我又写了一篇《答MZY:Excel指定区间的曲线下面积》,该文只是就Y=eX的曲线谈了分几个区间的曲线下面积的作图,因为思路是一样的,就未对分段的正态分布曲线作介绍。其实把这两篇文章结合起来就可以解决类似于上图的分区间的正态分布曲线下面积的绘制。
分区间段的面积图有多种做法,一般使用覆盖法,这样对全程控制比较方便。但是要注意要先做全程的,然后从右到左,使后者逐次叠加覆盖前者得一部分,每一系列的左端点应该是重合的,只是右端点不同,否则会出错。上图是μ=60,σ=15的正态分布曲线二维面积图,看起来是对三个不同的、但相连接的区间(-∞,55],(55,65]和(65,+∞)分别着色,其实是对(-∞,55],(-∞,65]和(-∞,+∞)三个互有重叠的区间实施不同的颜色填充,由于数据系列的前后顺序遮挡掩盖,而在视觉上形成是对首尾互相连接的三个区间填充内部图案的感觉。
首先,建立数据系列的表格,使用正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),来表达区间(-∞,+∞)上的正态分布,其中:“平均数”μ=60;“标准差”σ=15;逻辑值“积累与否”取“FALSE”。A列设置随机变量数值,在A2单元格设为0、A3单元格设1,等差值为1,选中A2:A3后,一直拖到A112得出数值为110为止。在B列设置正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),使B2单元格的内容为“=NORMDIST(A2,60,15,FALSE)”,向下拖曳复制公式到B112,如表-1所示,B列的显示的是公式:
表-1
如果使B列显示的是数值,即如表-2所示:

表-2
先作系列1:
将区间(-∞,+∞)作为系列1,也就是全程,放在最下一层,
选中单元格区间A2:B112,插入二维面积图,这就绘出μ=60,σ=15,在(-∞,+∞)的正态分布曲线图,如图-1所示。可见该中间高两头低的钟形图形是以μ=60为对称轴的轴对称图形,并以横轴为渐近线:

图-1
图-1完成后,在2003版的“源数据”-“系列”中可以看到系列1的“值”和“分类(x)轴标志”设置,如图-2所示:
图-2
在2010版中点击“图表工具”-“数据”-“选择数据”,如图-2-2010-1所示:
图-2-2010-1
在“选择数据源”对话框中,可以看到系列1已设置,如图-2-2010-2所示:
图-2-2010-2
在“编辑数据系列”对话框中可以看到“系列值”中的设置,如图-2-2010-3所示:
图-2-2010-3
而“轴标签”的设置,如图-2-2010-4所示:
图-2-2010-4
后续的数据系列必须在源数据中逐步添加。
添加系列2:
在“源数据”-“系列”-“系列”中添加系列2,将区间(-∞,65]作为系列2,“值”和“分类(x)轴标志”的设置如图-3所示:
图-3
图-3中“值”的具体设置方法是:点击“值”右侧的拾取折叠按钮,会弹出如图-4所示的“源数据-数值”对话框,选取系列2数据所在的单元格B2:B67,“源数据-数值”对话框会出现设置如图-4所示数据,再点击“源数据-数值”对话框右侧的拾取折叠按钮,则折叠复位到图-3。分类(x)轴标志”的设置方法也是利用右侧的拾取折叠按钮,选择的范围还是全程A2:A112.

图-4
在2010版中,类似的设置如图-4-2010-1与图-4-2010-2所示:
图-4-2010-1
图-4-2010-2
确定后,图表如图-5所示:
图-5
添加系列3:
在“源数据”-“系列”-“系列”中添加系列3,将区间(-∞,55]作为系列3,“值”和“分类(x)轴标志”的设置如图-6所示:
图-6
图-6中“值”的具体设置方法是:点击“值”右侧的拾取折叠按钮,在弹出的“源数据-数值”对话框,选取系列3数据所在的单元格B2:B57,再点击“源数据-数值”对话框右侧的拾取折叠按钮,则折叠复位。分类(x)轴标志”选择的范围还是全程A2:A112。
在2010版中,类似的设置如图-6-2010-1与图-6-2010-2所示:
图-6-2010-1

图-6-2010-2
确定后,图表如图-7所示:
图-7
为了说明三个系列前后遮挡掩盖的效果,可以用三维面积图来说明。
当只有系列1时的三维图,如图-8所示:
图-8
当添加系列2后的三维图,如图-9所示:

图-9
当添加系列3后的三维图,如图-10所示:

图-10
将三个系列的三维图的三维变换角度调为0,相当于从侧面正视这个三维图,三维的遮挡掩盖效果就成了二维的分段切割效果,如图-11所示:
图-11
最后要说明的是,这种分段区间的曲线下面积图的制作是对若干个互有重叠的区间实施不同的颜色填充,由于数据系列的前后顺序遮挡掩盖,而在视觉上形成是对首尾互相连接的三个区间填充内部图案的感觉。因此在制作中如有覆盖错误,很可能是数据系列的次序颠倒,可以在相关的数据系列次序调整的选项面板中进行调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27