
Excel绘制指定区间的正态分布曲线下面积图
正态分布曲线下面积是很有实际应用价值的。在工程能力指数的评估、产品质量分析和教育评估分析方面都发挥了很大作用。
在正态分布的密度函数中有上述两个常数:算数平均数μ和标准差σ。正态分布的值有99.74%落在(μ-3σ,μ+3σ)区间内,也就是说落在以平均值为中心的左右各3个σ(共六个σ)的范围内,所谓管理学中的“三西格玛”或“六西格玛”就源于此。Excel中可以使用正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),来表达正态分布,其中:x —“值”,是要求分布的随机变量数值;μ—“平均数”,是分布的算数平均数;σ—“标准差”,是分布的标准差;逻辑值—“积累与否”,是决定函数的逻辑值,其中取值为 “TRUE”(真),则返回累计分布函数;取“FALSE”(伪),则NORMDIST会返回正态分布函数的高度。如果为了绘制正态分布曲线,就要取“FALSE”。
Mly网友来信问起我在《Excel:正态分布函数曲线下的面积及其应用》中的图-3. μ=60,σ=15,在(-∞,55)的正态分布曲线二维面积图(蓝斜纹)如下图,是如何绘制的。
这篇《Excel:正态分布函数曲线下的面积及其应用》主要是谈正态分布及其曲线下面积的应用,这张图是运用的一个例子,至于图表如何作出的具体步骤,文中就未作介绍。过后,正好有一位网友MZY来信问起了有关定积分的指定区间的曲线下面积的作图,我又写了一篇《答MZY:Excel指定区间的曲线下面积》,该文只是就Y=eX的曲线谈了分几个区间的曲线下面积的作图,因为思路是一样的,就未对分段的正态分布曲线作介绍。其实把这两篇文章结合起来就可以解决类似于上图的分区间的正态分布曲线下面积的绘制。
分区间段的面积图有多种做法,一般使用覆盖法,这样对全程控制比较方便。但是要注意要先做全程的,然后从右到左,使后者逐次叠加覆盖前者得一部分,每一系列的左端点应该是重合的,只是右端点不同,否则会出错。上图是μ=60,σ=15的正态分布曲线二维面积图,看起来是对三个不同的、但相连接的区间(-∞,55],(55,65]和(65,+∞)分别着色,其实是对(-∞,55],(-∞,65]和(-∞,+∞)三个互有重叠的区间实施不同的颜色填充,由于数据系列的前后顺序遮挡掩盖,而在视觉上形成是对首尾互相连接的三个区间填充内部图案的感觉。
首先,建立数据系列的表格,使用正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),来表达区间(-∞,+∞)上的正态分布,其中:“平均数”μ=60;“标准差”σ=15;逻辑值“积累与否”取“FALSE”。A列设置随机变量数值,在A2单元格设为0、A3单元格设1,等差值为1,选中A2:A3后,一直拖到A112得出数值为110为止。在B列设置正态分布的密度函数NORMDIST(x,μ,σ,逻辑值),使B2单元格的内容为“=NORMDIST(A2,60,15,FALSE)”,向下拖曳复制公式到B112,如表-1所示,B列的显示的是公式:
表-1
如果使B列显示的是数值,即如表-2所示:
表-2
先作系列1:
将区间(-∞,+∞)作为系列1,也就是全程,放在最下一层,
选中单元格区间A2:B112,插入二维面积图,这就绘出μ=60,σ=15,在(-∞,+∞)的正态分布曲线图,如图-1所示。可见该中间高两头低的钟形图形是以μ=60为对称轴的轴对称图形,并以横轴为渐近线:
图-1
图-1完成后,在2003版的“源数据”-“系列”中可以看到系列1的“值”和“分类(x)轴标志”设置,如图-2所示:
图-2
在2010版中点击“图表工具”-“数据”-“选择数据”,如图-2-2010-1所示:
图-2-2010-1
在“选择数据源”对话框中,可以看到系列1已设置,如图-2-2010-2所示:
图-2-2010-2
在“编辑数据系列”对话框中可以看到“系列值”中的设置,如图-2-2010-3所示:
图-2-2010-3
而“轴标签”的设置,如图-2-2010-4所示:
图-2-2010-4
后续的数据系列必须在源数据中逐步添加。
添加系列2:
在“源数据”-“系列”-“系列”中添加系列2,将区间(-∞,65]作为系列2,“值”和“分类(x)轴标志”的设置如图-3所示:
图-3
图-3中“值”的具体设置方法是:点击“值”右侧的拾取折叠按钮,会弹出如图-4所示的“源数据-数值”对话框,选取系列2数据所在的单元格B2:B67,“源数据-数值”对话框会出现设置如图-4所示数据,再点击“源数据-数值”对话框右侧的拾取折叠按钮,则折叠复位到图-3。分类(x)轴标志”的设置方法也是利用右侧的拾取折叠按钮,选择的范围还是全程A2:A112.
图-4
在2010版中,类似的设置如图-4-2010-1与图-4-2010-2所示:
图-4-2010-1
图-4-2010-2
确定后,图表如图-5所示:
图-5
添加系列3:
在“源数据”-“系列”-“系列”中添加系列3,将区间(-∞,55]作为系列3,“值”和“分类(x)轴标志”的设置如图-6所示:
图-6
图-6中“值”的具体设置方法是:点击“值”右侧的拾取折叠按钮,在弹出的“源数据-数值”对话框,选取系列3数据所在的单元格B2:B57,再点击“源数据-数值”对话框右侧的拾取折叠按钮,则折叠复位。分类(x)轴标志”选择的范围还是全程A2:A112。
在2010版中,类似的设置如图-6-2010-1与图-6-2010-2所示:
图-6-2010-1
图-6-2010-2
确定后,图表如图-7所示:
图-7
为了说明三个系列前后遮挡掩盖的效果,可以用三维面积图来说明。
当只有系列1时的三维图,如图-8所示:
图-8
当添加系列2后的三维图,如图-9所示:
图-9
当添加系列3后的三维图,如图-10所示:
图-10
将三个系列的三维图的三维变换角度调为0,相当于从侧面正视这个三维图,三维的遮挡掩盖效果就成了二维的分段切割效果,如图-11所示:
图-11
最后要说明的是,这种分段区间的曲线下面积图的制作是对若干个互有重叠的区间实施不同的颜色填充,由于数据系列的前后顺序遮挡掩盖,而在视觉上形成是对首尾互相连接的三个区间填充内部图案的感觉。因此在制作中如有覆盖错误,很可能是数据系列的次序颠倒,可以在相关的数据系列次序调整的选项面板中进行调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13