京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不要着急玩大数据
沸沸扬扬的“大数据(Big Data)”,把很多企业、很多人搞得魂不守舍,蠢蠢欲动,似乎只要一玩大数据,大家都可以发大财似的。
其实,你只要静下心来想一想,很多企业,似乎还没有资格去玩什么大数据。
因为,“微数据(Micro Data)”、“小数据(Small Data)”你都还没有搞清楚,你去玩什么“大数据”?
那么,什么叫微数据呢?
说简单点,所谓的微数据就是你自己的数据,如制造业普遍使用的ERP数据。很多企业,花了很多钱上了ERP,结果还是“不好使”,给客户及时交货率没有提高,呆滞库存还是数不清,库存周转率还是上不去,为什么?
很多人抱怨是上错了ERP,或者怪ERP功能不完善,更有甚者是把使用了多年的BAAN/ORACLE换成了SAP,结果呢?还是那个样儿!
这是为什么?
业务流程、组织架构没有与ERP有效结合是个很重要的原因,但ERP内部数据不准确,却是个重中之重的原因!
所以,我跟很多企业讲,其实你不需要这么昂贵的ERP,你花十分之一、甚至是百分之一的钱,用个金蝶K3或者用友的U8也就足够了,因为“一只拿着木头棒子的猴子,完全可以杀死一头拿着AK47(突击步枪)的猪”(注:这句话不是我说的,是我伟创力一个兄弟的发明),你信不信?
关键的问题是你先理清你的微数据。
微数据包括主数据(Master Data),如BOM数据,交易数据(Transactional Data),如收、发货的数据等等,但这些说白了都属于企业内部的数据,理论上是完全可控的,但你真正控制住了吗?
我的TIM审核、数据挖掘的12张表,基本都属于“微数据”的范畴,但又有几家企业能够比较完整地提取出来?
接下来才是所谓的“小数据”,见附图第二层。
小数据是指企业外部的,但是又是来自于合作伙伴的数据,如供应商的库存,客户的库存,甚至是供应商的供应商的库存,客户的客户的库存。
这些数据基本上也是可控的,但前提是需要ERP之外的工具链接,如一些供应链管理协同软件,类似E2OPEN等等。
但现在的问题是,这些小数据,对很多企业来讲也是个巨大的挑战。
我在审核很多企业的供应链管理过程中,发现一种我称之为“伪VMI”的现象。我的很多咨询客户的客户要他们做VMI(供应商管理库存),但客户的客户每天用了他们多少东西,什么时间用的,用了多少,又不告诉人家,没有任何系统对接,只有等到财务月结的时候才产生个数据,准不准也不知道,这叫什么VMI?当然,“伪VMI”还包括让供应商被动地补货,这里就不多讲了。
小数据搞不定,又会直接影响大数据分析的准确性,反之亦然,于是就乱成了一锅粥。物流的三流(物流、信息流、资金流)被讲了多少年了,但最基础的信息流,也就是数据流都搞不清楚,又哪来的物流、资金流?
小、微数据乱了套,搞大数据又有啥用?
从供应链管理的角度,基础原材料的供应市场分析应该属于所谓大数据的范畴。如,你要研究电子元器件的价格、供应走势,你就必须从大数据的角度,来研究硅、镍、铜等基础原材料的市场情况;你要研究哪款产品好卖,你就要从大数据角度,研究终端消费者的消费行为、习惯等等。
但问题是,你大数据研究的再好,你的小数据、微数据不给力,你不是该出不去货,还是出不去,该有的呆滞库存,你还还是有吗?
基础打不好,你即使能伸到“云”里去,又能怎么样呢?
从“微”到“小”,再从“小”到“大”,这是个规律啊!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01